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A B S T R A C T   

Sensors in a Wireless Sensor Network (WSN) sense, process, and transmit information simultaneously. They 
mainly find applications in agriculture monitoring, environment monitoring, smart city development and 
defence. These applications demand high-end performance from the WSN. However, the performance of a WSN 
is highly vulnerable to various types of security threats. Any intrusion may reduce the performance of the WSN 
and result in fatal problems. Hence, fast intrusion detection and prevention is of great use. This paper aims 
towards fast detection and prevention of any intrusion using a machine learning approach based on Gaussian 
Process Regression (GPR) model. We have proposed three methods (S-GPR, C-GPR and GPR) based on feature 
scaling for accurate prediction of k-barrier coverage probability. We have selected the number of nodes, sensing 
range, Sensor to Intruder Velocity Ratio (SIVR), Mobile to Static Node Ratio (MSNR), angle of the intrusion path, 
and required k as the potential features. These features are extracted using an analytical approach. Simulation 
results demonstrate that the proposed method III accurately predicts the k-barrier coverage probability and 
outperforms the other two methods (I and II) with a correlation coefficient (R = 0.85) and Root Mean Square 
Error (RMSE = 0.095). Further, the proposed methods achieve a higher accuracy as compared to other bench-
mark schemes.   

1. Introduction 

Technological advancements in Micro-Electro-Mechanical Systems 
(MEMS) have lead to the miniaturisation of electronic devices along 
with advanced wireless communication technologies, signal processing 
abilities and efficient power consumption (Ali et al., 2015). These ad-
vancements have allowed the manufacturers to design and develop tiny 
wireless sensor nodes which in turn are used to form a WSN. A WSN may 
consist of hundreds to thousands of sensor nodes spread independently 
and uniformly within the Region of Interest (RoI) (Singh, Sharma, & 
Singh, 2021; Amutha, Sharma, & Nagar, 2020; Singh, Kotiyal, Sharma, 
Nagar, & Lee, 2020). A WSN does not need any pre-installed base for 
support and operates in a self-structured and decentralised manner 
(Nagar, Chaturvedi, & Soh, 2020). Also, ease in deployment in remote/ 
inaccessible regions, hazardous environments and emergency condi-
tions, have paved the path for their numerous military and civilian ap-
plications such as border surveillance, industrial monitoring and 

control, security, structural health monitoring, precision agriculture, 
healthcare, remote landslides monitoring and forest fire detection (Noel 
et al., 2017; Jawad, Nordin, Gharghan, Jawad, & Ismail, 2017; Dey, 
Ashour, Shi, Fong, & Sherratt, 2017; Kumar, Duttagupta, Rangan, & 
Ramesh, 2020; Aponte-Luis et al., 2018; Singh, Sharma, Singh, & Kumar, 
2019). 

There are several countries throughout the world with no sentinels, 
patrolling soldiers or residents in the vicinity of their international 
borders. Besides, international borders have a few checkpoints along the 
stretch of borders and there exits a large no man’s area between the 
checkpoints and the border on the opposite side. Also, patrolling of 
soldiers along the borders is conventional, limited, and periodic; as a 
result, international borders remain unguarded for a long duration of 
time. It is highly likely that the enemies can enter the territory without 
being detected from these unattended areas. They may take highly 
sensitive and classified information or destroy some key infrastructure 
which may cause a significant loss to the country. Therefore, intrusion 

* Corresponding author at: Gautam Buddha University, Greater Noida 201312, India. 
E-mail addresses: sabhilash@iiserb.ac.in (A. Singh), jpnagar91@gmail.com (J. Nagar), sandeepsvce@gmail.com (S. Sharma), kotiyalvaibhav98@gmail.com 

(V. Kotiyal).  

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

https://doi.org/10.1016/j.eswa.2021.114603 
Received 10 October 2020; Received in revised form 12 December 2020; Accepted 11 January 2021   

mailto:sabhilash@iiserb.ac.in
mailto:jpnagar91@gmail.com
mailto:sandeepsvce@gmail.com
mailto:kotiyalvaibhav98@gmail.com
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2021.114603
https://doi.org/10.1016/j.eswa.2021.114603
https://doi.org/10.1016/j.eswa.2021.114603
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.114603&domain=pdf


Expert Systems With Applications 172 (2021) 114603

2

detection is a paramount security issue for any nation. 
One of the critical applications of WSNs is intrusion detection i.e., for 

monitoring the border areas, no man’s territories, infrastructures and 
their perimeters to detect and prevent any unauthorised access to these 
regions. A plethora of literature is available proposing different 
analytical models and algorithms for intrusion detection. Assad, Elbhiri, 
Faqihi, Ouadou, and Aboutajdine (2016) have proposed a mathematical 
model to investigate the quality of intrusion detection in terms of k- 
coverage and k-connectivity metrics. They have conjectured that an 
intruder pursues a parametric curve route to move from one boundary of 
the region to another. This assumption is not always true because an 
intruder may pursue a linear/zigzag route or travel at a given angle to 
avoid its detection or minimise the chances of its discovery. False alarms 
are another concern as it is an undesirable trait of WSNs. To tackle this 
issue, Sharma and Chauhan (2020) have presented a three-level hier-
archy-based sensor fusion scheme to ensure the presence of an intruder. 
They have used an acoustic signal and sensing probability model along 
with the k-mean clustering and Likelihood Ratio Test (LRT) to minimise 
false alarm rate and maximise intruder detection probability. Due to the 
implementation of various security measures for WSNs, an intruder may 
be aware of the position of sensing nodes in the region and move 
accordingly to avoid its detection. To deal with such troubles, Wang, 
Huang, Li, He, and Sha (2020) have proposed a vehicle collaboration 
sensing network model. In this model, they have deployed static sensor 
nodes and mobile sensing vehicles that work together to detect the 
presence of an intruder trying to cross the border areas. Similarly, 
Mohapatra, Sahoo, and Wu (2016) have proposed an architecture based 
on big data analytical techniques. The proposed architecture is used to 
process and study the immense volume of data produced by static mi-
crowave sensors and mobile cameras deployed to render a barrier 
coverage against an intruder trying to cross the border areas. Further, 
Ghosh, Neogy, Das, and Mehta (2018) have proposed two energy- 
efficient and loop-free routing schemes for intrusion detection at unat-
tended borders, large military barracks and other sensitive places. The 
proposed schemes render an improved lifetime for the concerned 
network as compared to LEACH and TEEN routing schemes. 

Previous studies indicate that mobility in WSNs significantly im-
proves their performance (Liu, Brass, Dousse, Nain, & Towsley, 2005; 
Keung, Li, & Zhang, 2012; He, Chen, Li, Shen, & Sun, 2013). Thus, Nagar 
and Sharma (2018) have studied k-barrier coverage probability in a 
Mobile Sensor Network (MSN). They have also analysed the influence of 
various network and system parameters such as sensor and intruder 
speed, nodes count, and node’s sensing range, on the k-barrier coverage 
probability. Recently, Sharma and Nagar (2020) have derived a closed- 
form analytical expression to compute the k-barrier coverage probability 
for an intruder by deploying mobile sensor nodes in a rectangular RoI. 
They have assumed that an intruder moves at a given angle with the 
minimum length (w) route to transverse the RoI. At first, they have 
calculated the area covered by the intruder when travelling from one 
boundary region to another. Then, this area is used to obtain an 
analytical expression for the k-barrier coverage probability. 

Although the above-discussed methods are useful and effective for 
intrusion detection in border regions, they have some significant 
drawbacks like very high computational cost and time complexity. Since 
WSNs generate an immense volume of data, and the processing and 
analysis of this data are very time consuming and cumbersome task. To 
overcome this problem, we have proposed an efficient machine learning 
approach for accurate prediction of the k-barrier coverage probability 
with less time and computational requirements. To the best of our 
knowledge, no other study has been done and published to address this 
problem. 

In this paper, we have proposed three machine learning methods 
based on the GPR model. We have used the analytical approach to select 
and extract six features, namely the number of nodes, sensing range, 
SIVR, MSNR, angle of the intrusion path, and required k. Afterwards, we 
trained all the methods and evaluated its performance to accurately 

predict the k-barrier coverage probability using R, RMSE, and time 
complexity parameters as metrics. 

Further, we have divided the rest of the paper into six sections. In 
Section 2, we have discussed the related work. In the first half of Section 
3, we have discussed the coverage area of a mobile sensor with the 
details of the analytical formulation for k-barrier coverage probability. 
Furthermore, we have discussed the importance of each feature and the 
GPR model in detail. In Section 4, we have presented the simulation 
scenarios of k-barrier coverage probability and GPR simulations. In 
Section 5, we have discussed the results of all the three methods for k- 
barrier coverage probability prediction. Finally, in Sections 6 and 7, we 
have presented the discussion and conclusion respectively. 

2. Related works 

In this section, we have discussed various approaches that had been 
already proposed to improve the intrusion detection capabilities in 
WSNs. Several studies have been conducted for intrusion detection and 
prevention using machine learning approaches. Otoum, Kantarci, and 
Mouftah (2019) have proposed a Restricted Boltzmann Machine-based 
Clustered Intrusion Detection System (RBC-IDS) for efficient intrusion 
detection in WSNS. They compared the performance of RBC-IDS with 
adaptive machine learning-based IDS and reported a higher accuracy. 
Further, Han, Zhou, Jia, Dalil, and Xu (2019) proposed an energy- 
efficient low-consumption IDS for WSNs based on game theory and an 
auto-regressive model. The proposed model is capable of predicting the 
attack time and reduces energy consumption. Tan et al. (2019) has 
proposed intrusion detection technique based on Synthetic Minority 
Oversampling Technique (SMOTE) and Random Forest (RF) algorithm. 
They have used SMOTE to address the class imbalance issue of the 
intrusion dataset and RF algorithm to train the classifier. They reported 
an overall accuracy of 92.57%. Recently, Nancy et al. (2020) proposed 
an efficient intrusion detection approach for WSNs based on a fuzzy 
decision tree with a dynamic recursive feature selection algorithm. They 
have reported high precision level and low network delay. More 
recently, Riyaz and Ganapathy (2020) has proposed a deep learning 
approach based on Convolutional Neural Network (CNN) for effective 
intrusion detection in wireless networks. They have reported accuracy of 
98.88%. Nguyen and Kim (2020) have proposed a genetic CNN 
approach for intrusion detection in WSNs. They have proposed a unique 
feature subset approach for intrusion detection. The features are 
selected using a Genetic Algorithm (GA), Fuzzy C-mean clustering, and 
CNN extractor method. They have reported an accuracy of 98.2 %. To 
deal with the big data scenario, Hassan, Gumaei, Alsanad, Alrubaian, 
and Fortino (2020) proposed a hybrid deep learning model for efficient 
intrusion detection. This model is based on CNN and a Weight-Dropped, 
Long Short-Term Memory (WDLSTM) network. They reported an accu-
racy of 96.97%. 

Overall, this study aims to improve the computational efficiency and 
accuracy in the previous studies using regression-based machine 
learning approach. 

3. System model 

We uniformly and independently distribute a finite count of mobile 
sensors inside a 2D rectangular RoI with width w meters and length l 
meters, respectively, as shown in Fig. 1. This random spread of nodes 
renders a homogeneous Poisson point distribution of nodes with density 
ρA =

N(A)
A in the RoI, where, N(A) and A = l× w, represent the nodes 

count and the area of RoI respectively. All sensors are assumed homo-
geneous, i.e., they possess an equal amount of initial energy, hardware 
and software capabilities and identical sensing range. Furthermore, we 
assume that sensor nodes travel conforming to the random direction 
mobility model (Camp, Boleng, & Davies, 2002) in which the speed and 
direction of motion of a given node are independent of the speed and 
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direction of other sensor nodes of the network. The random direction 
mobility model keeps the distribution of mobile nodes uniform at any 
particular instant of time by avoiding the accumulation of sensor nodes 
in the middle of the RoI. A point within the RoI is assumed to be 
monitored by a sensor node if and only if its position is at a distance less 
than or equal to the node’s sensing range. We assume that an intruder is 
a dot-like object striving to transverse the RoI from one parallel 
boundary to the opposite parallel boundary of the RoI. Further, it is 
assumed that the intruder does not have any prior information about the 
position and mobility pattern of the sensor nodes. To avert its discovery 
or maximise its discovery time, an intruder may follow different routes, 
e.g., it can pursue a linear route, it can travel at a zigzag/curved route or 
travel at a particular angle to avoid its discovery or maximise its dis-
covery time. In this work, we consider than an intruder moves with a 

given speed vI at a given angle θ ∈

[

0, arctan
(

l
w

)]

with the width of the 

region w from the spot of intrusion (x, w). To calculate the k-barrier 
coverage probability (i.e., the probability of an intruder being discov-
ered by at least k distinct sensor nodes cumulatively not simultaneously) 
for a given intrusion route, we need to compute the area of the intrusion 
route. Computing the intrusion route area is an efficacious method. It 
depends on the abscissa of the spot of intrusion and angel (θ) at which an 
intruder moves from one boundary to the other. We discovered three 
elementary routes an intruder may follow to transverse the RoI and all 
other potential routes will be the subsets of these three elementary 
routes and can be incorporated accordingly. 

3.1. Coverage area of a mobile sensor node 

At first, we compute the area of fundamental intrusion routes that an 
intruder may follow to transverse the RoI. Then, this intrusion route area 
is used to attain a closed-form analytical expression for the k-barrier 
coverage probability of an intruder. 

Case 1: When the spot of intrusion is (0,w) and 
(

0⩽θ⩽arctan
(

l
w

))

. 

In this case, we assume that an intruder infiltrates the RoI from the 
point (0,w) and moves at θ to transverse the RoI as shown in route 1 of 
Fig. 3. Then, the intruder itinerary is given by 

Y = X⋅tan(90o + θ) +w (1)  

In this case, we need to calculate the area of two semicircular regions 
and one rectangular region, as shown in Fig. 2. Then, the value of 
ordinate when the value of abscissa is rs is given by 

Yi = rs⋅tan(90o + θ) +w (2)  

In this way, we obtain the center of the circle at the starting point and is 
given by Ci = (rs,Yi). Now, the center of the circle at the end of the route 
is denoted by Cf = (Xf , rs) and the value of Xf when Yf = rs is given by 

Xf =
rs − w

tan(90o + θ)
(3)  

The length of the rectangular region of the intrusion route denoted by λ 
is equal to the distance between initial Ci = (rs,Yi) and final center Cf =

(Xf , rs) of the circular part and is given by 

λ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Xf − rs

)2
+ (Yi − rs)

2
√

(4)  

The width of the rectangular region will be twice of the sensing range rs. 
The total area of the intrusion route will be equal to the sum of the areas 
of the rectangular and two semicircular parts and is given by 

AI = λ⋅2rs + πr2
s (5) 

Case 2: When intrusion spot is (rs < x < l − rs,w) and 
(

0⩽θ⩽arctan
(

l
w

))

. 

In this case, an intruder is conjectured to enter from the position (x,
w) at an angle θ to transverse the RoI as depicted in route 2 of Fig. 3. The 
itinerary of the intruder is given by 

Y = (X − x)⋅tan(90o + θ)+w (6)  

Then, the abscissa of the center of the circle at the starting of the route 
two can be obtained by putting Y = w − 2rs and is given by 

Xi = x −
rs

tan(90o + θ)
(7)  

and the final center of the circle at the end of the path is obtained by 
putting Y = rs and is given by Cf = (Xf , rs), where Xf is 

Xf = x+
rs − w

tan(90o + θ)
(8) 

Fig. 1. Mobile sensor network scenario with intruder.  

Fig. 2. Coverage area of a mobile sensor in time τ seconds.  

Fig. 3. Motion of an intruder at various intrusion path angles (θ).  
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Therefore, the center of the circle at the beginning and the end of the 
route are denoted by Ci = (Xi,w − rs) and Cf = (Xf , rs) respectively. As 
discussed above, the width of the rectangular part of the region will be 
2rs and the distance between the initial and final center of the circle in 
this path will serve as the length (λ) of the rectangular area of the path 
and can be calculated as 

λ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Xf − Xi

)2
+ (2rs − w)2

√

(9)  

In this way, the total area of the intrusion route will be equal to the sum 
of the areas of the rectangular and the two semicircular parts and is 
computed as 

AI = λ⋅2rs + πr2
s (10) 

Case 3: When intrusion spot is (rs <= x <= l − rs,w) and θ = 0◦. 
In this case, an intruder will take the least distance route to trans-

verse the RoI as shown in route 3 of Fig. 3 and the total covered area can 
be obtained by summing the area of rectangular and circular regions and 
is computed as 

AI =

(

w − 2rs

)

⋅2rs +
1
2

πr2
s +

1
2

πr2
s (11)  

As an illustration, let us assume that an intruder wants to cross a rect-
angular belt RoI from one parallel boundary AB to the opposite 
boundary CD. As per its convenience, the intruder may choose to start 
from the corner A with coordinates (0,w), a random point between rs and 
(l − rs), and a random point between (l − rs) and (rs). Similarly, the 
intrusion may travel at an angle of 0o representing the shortest length 
route between AB and CD. It is also possible that the intruder may fol-

lows an angle 
(

0 < θ⩽arctan
(

l
w

))

. All the possible combinations of 

starting point between A and B, and the intrusion route angle θ result in 
three fundamental routes discussed above. Any other possible route will 
be a subset of these three elementary routes and can be dealt with 
accordingly. 

3.2. Analytical formulation for k-barrier coverage probability 

To obtain an analytical closed-form expression for k-barrier coverage 
probability (P(Φ⩾k)), we need to compute the average uncovered dis-
tance (γavr), the relative velocity of mobile sensor with respect to (w.r.t.) 
the intruder (vrel), coverage rate (δs) and unattended time duration be-
tween consecutive sensor coverage as prerequisites. The definitions of 
these prerequisites are taken from Sharma and Nagar (2020). The mean 
unguarded distance by nodes in a stationary network is given by 

γavr =
1

(ρA)⋅(Cs)
(12)  

where, Cs =

(

2rs +
πr2

s
vI ⋅τ

)

is the coverage cross section by static sensors. 

The expected velocity of mobile sensor nodes w.r.t. the intruder can 
be calculated by 

vrel =
2(vI + vs)

π ⋅χ
(

φ
)

(13)  

where, χ(φ) is an incomplete elliptical integral and is computed as 

χ
(

φ

)

=

∫ π
2

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − φsin2( ϕ
)√

dϕ (14)  

where, ϕ is the angle between the direction of sensor and intruder, and 
ψ = 4vIvs

v2
I +v2

s +2vIvs 

Here, we assume that mobile sensor nodes move with constant ve-

locity vs and an intruder tries to transverse the RoI with velocity vI. 
Further, the total sensor coverage in time τ is given by 

δsτ = ρA⋅vrel⋅
(

2rs⋅τ +
πr2

s

vI

)

(15)  

The time duration between successive overages for which a given region 
is unguarded is the reciprocal of coverage rate. 

Now, the k-barrier coverage probability (P(Φ⩾k)) can be computed 
using the closed-form expression below (Sharma & Nagar, 2020) 

P

(

Φ⩾k

)

= 1 −
∑k− 1

j=0

(
e− δsτ(δsτ)j

j!

)

(16)  

where, δs and τ represents the coverage rate and time respectively. 

3.3. k-barrier coverage probability for a hybrid network 

In this section, we attain a closed-form formula for the k-barrier 
coverage probability of a hybrid network consisting of both mobile as 
well as static sensor nodes. We assume that the network is made of N(A)

μ+1 

and N(A)⋅ μ
μ+1 number of static and mobile sensor nodes respectively, where 

μ denotes MSNR. Thus, the coverage rates for mobile and static sensor 
nodes are denoted by δms and δss respectively and can be calculated as 

δms = ρA⋅
μ

μ + 1
⋅
(

2rs +
πr2

s

vI ⋅τ

)

vrel (17)  

δss =
ρA

μ + 1
⋅
(

2rs +
πr2

s

vI ⋅τ

)

vI (18)  

The intensities of Poisson processes for static and mobile sensor nodes 
are achieved with the help of coverage rates of static and mobile sensor 
nodes and are denoted by δssτ and δmsτ respectively. The inhomogeneous 
Poisson processes obey superposition principle, therefore, the resultant 
intensity for the hybrid network is (δss +δms)τ and the k-barrier coverage 
probability is given by 

P

(

Φ⩾k

)

= 1 −
∑k− 1

j=0

(
e− (δms+δss)τ((δms + δss)τ)j

j!

)

(19)  

3.4. Machine learning model 

3.4.1. Feature importance 
Feature importance scores play a critical role in any predictive 

model. To estimate the importance of each feature, we have used the 
regression ensemble method. In doing so, firstly, we trained a regression 
ensemble by boosting hundred regression trees (i.e., ensemble learning 
cycle) through LSBoost ensemble aggregation approach. We considered 
the regression tree as a weak learner with unity learning rate. Once we 
trained the ensemble, we have estimated the importance of each feature 
by summing these estimates over all the weak learner in it. Finally, we 
plotted the feature importance graph (Fig. 4). We found that out of six 
features, the number of nodes is the most important feature with highest 
feature score followed by sensing range, MSNR, SIVR, required k and 
lastly the angle of the intrusion path with least feature importance or 
score. 

Further, to show the average marginal effect of each feature on the 
predictand, we have plotted the partial dependency plot (Friedman, 
2001) of each feature (Fig. 5). In the same plot, we have also plotted the 
individual conditional expectation. It dis-aggregates the average effect 
and helps us to observe the functional relationship between the pre-
dictand and features at each instance. 

3.4.2. GPR model 
Regression is a type of supervised learning problem. It attempts to 
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model a relationship between a definite number of features and a 
continuous response variable called predictand. Amongst the various 
regression algorithms, GPR (Williams & Rasmussen, 2006) is the most 
robust, accurate and easy to implement (Østergård, Jensen, & Maa-
gaard, 2018). It is a probabilistic model that defines the uncertainty 
about the predictand. It assumes that the predictand follows a joint 
multivariate normal distribution. It found applications in vast areas like 

image processing, healthcare, wireless sensor networks, traffic analysis, 
ageing of metals and alloys and various other types of datasets to predict 
the desired parameter (He & Siu, 2011; Richter & Toledano-Ayala, 2015; 
Sun & Xu, 2010; Yabansu, Iskakov, Kapustina, Rajagopalan, & Kalidindi, 
2019; Saha, Saha, Saxena, & Goebel, 2010). Further, we have two cases 
in GPR: GPR with zero mean and GPR with non zero mean. In GPR with 
zero mean, the mean vector of the joint multivariate normal distribution 
is supposed to be a zero and the co-variance is calculated using the co- 
variance function. We consider our input–output pairs of training data 
to be a set, S, given by {(x1, y1),…, (xN, yN)}, where x1,…, xN are the 
vectors of the multivariate input and y1,…, yN are the corresponding 
scalar output. Let X = [x1, x2,…, xN]

T represents the input matrix whose 
rows are the training sets and T represents the transpose, y =

[y1, y2,…, yN]
T represents the vector of the output for out training data 

sets. It is assumed and considered that the training output observations 
are effected by additive noise that follow an independent identically 
distributed (iid) zero-mean Gaussian distribution i.e., N (0,σ2

n), where σ2
n 

is the noise variance. 
Let f be the joint distribution of the noiseless training output values 

corresponding to the X training input matrix and f* be the joint distri-
bution of the test output values corresponding to the X* testing input 
matrix. It can be written in matrix form as 
⎡

⎣
f
f*

⎤

⎦̃N

⎛

⎝0,

⎡

⎣
K(X,X) K(X,X*)

K(X*,X) K(X*,X*)

⎤

⎦

⎞

⎠ (20)  

ỹN
(
f, σ2

nI
)

(21)  

For n training and n* = (N - n) testing samples, the term K(X,X*) rep-
resents the co-variances matrix of size n × n* calculated over all the 
training and testing points. Similar explanation can be drawn for the 
remaining co-variance matrix K(X,X), K(X∗,X∗) and K(X*, X). Finally, 
we estimate the f* corresponding to the test inputs set, X*. In probabi-
listic term, it can be easily obtained by sampling the joint posterior 
distribution by obtaining the mean and co-variance matrix using  

The noisy version of the predicted output can be mathematically written 
in the form y = f(x)+ε where ε is the iid Gaussian noise with zero mean 
and noise variance σ2

n , and the corresponding noisy observation is given 
by 

cov
(
yp, yq

)
= k
(
xp, xq

)
+ σ2

nδpqcov
(
y
)
= K

(
X,X

)
σ2

nI (23)  

where δpq represents the binary Kronecker delta whose value is unity for 
p = q and zero if (p ∕= q). The noisy version of Eq. (20) is 

⎡

⎣
y
f*

⎤

⎦̃N

⎛

⎜
⎜
⎝0,

⎡

⎢
⎢
⎣

K
(
X,X

)
+ σ2

nI K(X,X*)

K(X*,X) K(X*,X*)

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠ (24)  

With reference to Eq. (22), the conditional distribution leads to the main 
predictive GPR equations as 

f*|X, y,X*̃N

(
f*, cov

(
f*

))
(25)  

where 

f* ≜ = E[f*|X, y,X*] = K
(

X*,X
)[

K
(
X,X

)
+ σ2

nI
]− 1y

cov
(

f*

)
= K

(
X*,X*

)
− K

(
X*,X

)[
K
(
X,X

)
+ σ2

nI
]− 1K

(
X*,X

) (26)  

The expression consists of K(X,X), K(X,X∗) and K(X*,X*) can be written 
in concise form by assigning K = K(X,X) and K* = K(X,X*). For single 
test point x*, we put k(x*) = k* to mark covariance vectors among the n 
training points and the test points. Taking into account this concise 
notation, Eq. (26) reduced to 

f * = kT
*
(
K + σ2

nI
)− 1y

V[f*] = k
(

x*, x*

)
− kT

*
(
K + σ2

nI
)− 1k*

(27)  

An alternate way to see Eq. (27) is to visualise it as a linear combination 
of the n number of kernel functions with each being centred at every 
available training sample. 

f

(

x*

)

=
∑n

i=1
αik

(

xi, x*

)

(28)  

where, α = (K + σ2
nI)− 1y. 

The co-variance functions have few free hyperparameters, which are 
usually learned from the data. The most common method to fit these free 
parameters is by maximising the log marginal likelihood of the training 
features, expressed as 

logp
(

y
⃒
⃒
⃒
⃒X
)

= −
1
2
yT(K + σ2

nI
)− 1y − 1

2
log
⃒
⃒K + σ2

nI
⃒
⃒ −

n
2

log2π (29) 

Fig. 4. Predictor importance graph.  

f*|X*,X, f̃N
(
K
(
X*,X

)
K(X,X)

− 1f,K
(
X*,X*

)
− K

(
X*,X

)
K(X,X)

− 1K
(
X,X*

))
(22)   
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It is customary to assume a Gaussian process to have a zero mean, but 
it is not necessarily true in all cases. For reasons such as model under-
standing, prior information conveying benefits and a number of 
methodical and mathematical limits, the mean could be non-zero and 
requires to be a model for the GP for exact results. We can easily model a 
non-zero mean into the functions by using the concept of explicit basis 
functions. To incorporate the deterministic mean function m(x), we need 
to define the conventional zero-mean GP as a difference of observations 
and deterministic mean function along with 

f (x)̃GP (m(x), k(x, x′)) (30)  

where the predictive mean can be estimated by 

f* = m
(

X*

)
+k
(

X*,X
)

K− 1
y

(
y − m

(
X
))

(31)  

where, Ky, can be expressed as K + σ2
nI, and the Eq. (26) will serve as the 

expression for a predictive variance without any change. However, due 
to the difficulty in specifying a fixed mean function, it is convenient to 
have a few fixed basis functions expressed as 

g
(
x
)
= f
(
x
)
+ h(x)T β, (32)  

where f(x) is the zero-mean GP having a distribution f(x)̃GP (0,
k(x, x’) ), h(x) represents the set of fixed basis functions and β represents 
the basis coefficients whose values is estimated from the training data. 
When fitting the model, we need to optimise β simultaneously with the 
hyperparameters of the co-variance function. An alternate approach is to 
integrate these parameters by taking prior on β to be Gaussian, while β̃
N (b,B) (O’Hagan, 1978). This give rise to another form of GP with an 
added feature in the co-variance function resulting from the mean un-
certainty. It give rise to the expression 

g
(

X*

)
= HT

* β + KT
* K − 1

y

(
y − HT β

)
= f
(

X*

)
+ RT β

cov
(

g*

)
= cov

(
f*
)
+ RT

(
B− 1 + HK− 1

y HT
)− 1

R (33)  

where the H and H* matrix collects the fixed basis function vector, h(x), 
for all training cases and test cases respectively. β being the mean of the 

global linear model parameter and expressed as β =

(B− 1 + HK− 1
y HT)

− 1
(HK− 1

y y + B− 1b), and R = H* − HK− 1
y K*. The limit of 

Eq. 33 as the prior on the β parameter is not defined, i.e., B− 1→O be-
comes an array of zeros, which leads to a predictive distribution that is 
independent of the term b. Limiting the value of β = (HK− 1

y HT)
− 1HK− 1

y y, 
we have 

g
(

X*

)
= f
(

X*

)
+ RT β

cov
(

g*

)
= cov

(
f*

)
+ RT

(
HK− 1

y HT
)− 1

R (34)  

Similar to the case of zero-mean GPR, the marginal likelihood for the 
model with non zero-mean can be expressed as 

logp
(

y
⃒
⃒
⃒
⃒X, b,B

)

= −
1
2
(
HTb − y

)T(Ky + HTBH
)− 1
(

HTb − y
)

= −
1
2

log
⃒
⃒Ky + HTBH

⃒
⃒ −

n
2

log2π (35)  

For estimating the limits where B− 1→O. Substituting the mean equals to 
zero, b = 0, we get 

logp
(

y
⃒
⃒
⃒
⃒X,b = 0,B

)

= −
1
2
yTK− 1

y y +
1
2
yTCy

logp
(

y
⃒
⃒
⃒
⃒X, b = 0,B

)

= −
1
2
log
⃒
⃒Ky
⃒
⃒ −

1
2

log|B| −
1
2

log|A| −
n
2

log2π
(36)  

with A = B− 1 +HK− 1
y HT and C = K− 1

y HTA− 1HK− 1
y 

Eq. 36, is composed of three expressions: a quadratic expression in y, 
a log determinant expression, and expression with log2π. After per-
forming an eigen decomposition of the covariance matrix, we observed 
that the contributions of the quadratic expression to the infinite- 
variance directions becomes zero. In contrast, the contribution of log 
determinant expression tends to minus infinity. On projecting y in a 
direction orthogonal to the span of HT and computing the marginal 
likelihood, we get the standard solution (Wahba, 1985; Ansley & Kohn, 

Fig. 5. Partial dependence plot (PDP) and individual conditional expectation (ICE) plots.  
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1985). Considering m be the rank of HT then the term − 1
2 log|B| − m

2 log2π 
in Eq. (36) can be ignored (Ansley & Kohn, 1985) and the expression we 
get is 

logp
(

y
⃒
⃒
⃒
⃒X
)

= −
1
2

yTK− 1
y y+

1
2
yTCy −

1
2

log
⃒
⃒Ky
⃒
⃒ −

1
2

log|A| −
n − m

2
log2π

(37)  

with, A = HK− 1
y HT and C = K− 1

y HTA− 1HK− 1
y . 

In this study we have used the squared-exponential co-variance 
function, ky as 

ky

(

xp, xq

)

= σ2
f exp

(

−
1

2l2
s

(
xp − xq

)2

)

+ σ2
nδpq (38)  

where ls represents the length scale, σ2
f represents the signal variance 

and σ2
n represents the noise variance. All these parameters can be varied. 

The performance of GPR depends on the features and scaling 
method. In this study, we have selected six features, namely the number 
of nodes, sensing range, SVIR, MSNR, angle of the intrusion path and 
required k. All these features are extracted using the analytical 
approach, as discussed in Section 3.2. The scaling method in GPR de-
pends on the characteristic of the problem. In this study, we proposed 
three methods, as shown in Fig. 6. The method I is S-GPR (Scaling GPR). 
In this method, the features are scaled using Eq. 39. 

xs =
x
σ (39)  

where, x represent the features, xs represents the standardised features, 
and σ is the standard deviation of the features. The second method, 
method II, C-GPR (Center mean GPR). Here, the features are scaled using 
Eq. 40. 

xs = x − x (40)  

where, x represents the mean of the features. The last method, method 
III, is the native GPR method in which the original features are feed to 
train and test the GPR. In this study, the dimension of the features and 
predictand data set is 542 × 7. We have divided the data set in 75:25 
ratio for training and testing of the GPR models. Hence, we have used 
406 × 7 data set for training and 136 × 7 for testing. 

4. Simulation experiment 

4.1. Simulation for k-barrier coverage probability 

We validate the given analytical model by Monte-Carlo simulations 
using the value of different simulation parameters given in Table 1. At 
first, we consider a rectangular region of 1000 × 500 meter square area 

Fig. 6. Flowchart of the methodology.  

Table 1 
Simulation parameters for k-barrier coverage probability.  

Parameter Value (s) 

Rectangular region l = 1000 m and w = 500 m  
Sensing range of nodes (rs)  (5 − 30) m  

Number of sensor nodes (N) 10 − 1500  
Maximum sensor (vs)/intruder speed (vI) (10 − 30) m/sec  
Sensor to Intruder Velocity Ratio (SIVR) 1:1, 1:2, 1:3, 2:1, 3:1 

Sensing time (τ)  10 sec  

Mobility Model Random direction mobility model 
Sensing range model Binary sensing range model 
Value of required k  5 − 50  

Node distribution model Uniform Random Distribution 
Intrusion path angle (θ)  [0, arctan (

l
w

)]   
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and deploy N number of homogeneous mobile sensor nodes uniformly 
and independently inside the RoI. All the mobile sensor nodes travel 
with a given speed and direction within the boundaries of the RoI. 
Similarly, an intruder is taken to be a dot-like object and is characterised 
by its speed and the angle at which it may move to cross the border area. 
These mobile sensors try to build a barrier in such a manner that every 
possible route that an intruder might take have at least k distinct sensor 
monitoring it. Therefore, an intruder is taken to be discovered by a 
sensor node if and only if it falls inside the coverage area of that sensor 
node. We evaluate the performance of the model in terms of k-barrier 
coverage probability denoted by P(Φ⩾k). 

4.2. GPR simulation for k-barrier coverage probability 

In the GPR simulation, we have three free hyperparameters, namely 
characteristic length scale, signal standard deviation and noise standard 
deviation. The covariance function is parameterised in terms of these 
hyperparameters. In this study, we have used the square exponential 
kernel as the covariance (or kernel) function. This covariance function 
has separate characteristic length scales for each predictor. In this study, 
these length scales are defined by the standard deviation of the pre-
dictors or features. Similarly, the other two hyperparameters are tuned 
through statistical parameters and their values/methods are listed in 
Table 2. 

In this study, we have used a constant explicit basis function. This 
basis function will add the term H ∗ β to the model, where H represents 
the basis matrix, and β represents the basis coefficients. 

5. Results 

In this section, we have presented the performance of all the three 
methods (i.e., Method I, Method II, and Method III) in predicting the k- 
barrier coverage probability. We have plotted a linear regression curve 
between the simulated and GPR predicted k-barrier coverage 
probability. 

5.1. Performance of the Method I 

We have compared the simulated k-barrier coverage probability with 
the predicted response of the Method I. In doing so, we observed that the 
predicted response is fairly correlated with the simulated results with R 
= 0.64 and RMSE  = 0.137 (Fig. 7a). The variations are not well 
accorded because of the mild scattering. Further, to determine whether 
the linear model fits the data well, we have plotted the residual plot 
(Fig. 7b). The residual plot seems to be randomly scattered without 
following any pattern, and hence this linear regression plot can be 
considered as a good fit. 

5.2. Performance of the Method II 

In this sub-section, we have compared the simulated k-barrier 
coverage probability with the predicted response of Method II. On 
comparing, we found that the predicted response is highly correlated 
with the simulated results and gathered along the regression line with R 
= 0.79 and RMSE  = 0.108 (Fig. 8a). Also, the variations are well 
accorded. 

Further, after plotting the residual plot (Fig. 8b), we found that the 
residuals are randomly scattered. This suggests that the linear plot is a 
good fit. 

5.3. Performance of the Method III 

Lastly, in this sub-section, we have compared the simulated k-barrier 
coverage probability with the predicted response of Method III. We 
observed a prodigiously good agreement between both with R  = 0.85 
and RMSE  = 0.095 (Fig. 9a). In this case, also, the variations are well 
accorded. Finally, the residual plot is randomly scattered and hence 
suggesting the linear model is a good fit. 

6. Discussion 

In this section, we have discussed the time complexity of the pro-
posed methods and compared the results with three different scenarios 
of the Monte Carlo simulation (Fig. 10). In doing so, we observed no 
obvious difference in the time complexity of all the proposed methods (i. 
e., I, II, and III) with the method I having least time complexity followed 
by method III and method II. However, we found a significant difference 
when these results are compared with the Monte Carlo simulation for 
node density 100, 200, and 300. All other parameters are kept constant. 
The time complexity of the Monte Carlo simulation increases with 
increasing the node density. Hence, our proposed methods are very 
efficient with respect to the time complexity. The time complexity of 
GPR is O (N3), where N represents the training samples. The time 
complexity increases significantly if N is greater than ten thousand, 
which is generally encountered with geospatial data (big data). In WSNs 
arena, we usually do not encounter such high training samples. Hence, 
GPR based machine learning models can be used without much concern 
with respect to the time complexity. However, to further reduce down 
the time complexity, various sparse GPR methods have been proposed 
(Quiñonero-Candela & Rasmussen, 2005; Gu & Hu, 2012). These 
modified versions of GPR alleviate the time complexity further and 
much useful while working with big data. 

Various other studies have been reported for improving the accuracy 
of intrusion detection based on fuzzy rule-based systems and ANN 
(Mittal, Saraswat, Iwendi, & Anajemba, 2019; Batiha, Prauzek, & 
Krömer, 2020). A detailed comparative analysis of the performance of 
various machine learning approach can be found in Baraneetharan 
(2020). All these studies have also reported a high accuracy for intrusion 
detection in WSNs. However, to ensure a fair evaluation, we need to 
compare the results of GPR models with other regression-based machine 
learning (Singh et al., 2020). In doing so, we have compared the results 
obtained through GPR with the corresponding variant of the benchmark 
algorithm Support Vector Regression (SVR) over the same data set 
(Singh et al., 2020). The corresponding variant of SVR are Scaling-SVR 
(S-SVR), Center mean-SVR (C-SVR), and SVR as shown in (Table 3). We 
have used R, RMSE, and time complexity as comparison metrics. On 
comparing, we found that method III has the best, and S-SVR has the 
worst R values. Also, the RMSE is the lowest in method III as compared 
to the methods with high R values. Overall, method III has a good R with 
relatively lower RSME and with reasonable time complexity. 

7. Conclusion 

In this paper, we have presented a comprehensive framework for the 

Table 2 
Simulation parameters for GPR model.  

Parameters Values/methods Description 

Kernel (Covariance) 
Function 

Squared exponential 
kernel 

It has a separate length scale per 
predictor 

length scale (ls)  std(Xtrain) It is the standard deviation of the 
predictors 

Signal standard 
deviation (σf > 0)

std(Ytrain) It is the standard deviation of the 
predictand 

Noise standard 
deviation (σn > 0)

[10− 4, max(10− 3, 
10⋅std(Ytrain))]  

It is a real value between the range 

Basis Function Constant With basis matrix H = 1; n × 1 
vector of 1’s.  

Computation 
method 

QR factorization This methods provides better 
accuracy for computing log 

likelihood and gradient  
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Fig. 7. Prediction results for k-barrier coverage probability using Method I. Fig. 7a shows the linear regression plot between the simulated and predicted response. 
The grey color represents the 95% C.I of the regression line. Fig. 7b shows the corresponding residual plot. The dashed line in the diagram represents RMSE. 

Fig. 8. Prediction results for k-barrier coverage probability using method II. Fig. 8a shows the linear regression plot between the simulated and predicted response. 
The grey color represents the 95% C.I of the regression line. Fig. 8b shows the corresponding residual plot. The dashed line in the diagram represents RMSE. 

Fig. 9. Prediction results for k-barrier coverage probability using method III. Fig. 9a shows the linear regression plot between the simulated and predicted response. 
The grey color represents the 95% C.I of the regression line. Fig. 9b shows the corresponding residual plot. The dashed line in the diagram represents RMSE. 
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accurate prediction of k-barrier coverage probability. We have proposed 
three GPR based machine learning models based on the data stand-
ardisation. We trained all the three models using the squared expo-
nential kernel. Afterwards, we have evaluated and compared the 
performance of all the three models. To ensure a fair comparison, we 
have selected R, RMSE, and time complexity parameters as metrics. On 
Comparing, we observed that the native GPR model (i.e., method III) 
results in the highest R with relatively lower RMSE. Further, method III 
outperforms the corresponding SVR variants in terms of accuracy. 
Hence, this method can be used for accurate prediction of k-barrier 
coverage probability with less time complexity. 
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Table 3 
Comparison of the proposed methods with the benchmark.  

Parameters Methods  

(S-GPR) C-GPR (GPR) S-SVR C-SVR SVR 

R 0.64 0.79 0.85 0.25 0.27 0.28 
RMSE 0.137 0.108 0.095 0.051 0.068 0.045 

Time (s) 7.79 9.51 8.16 3.36 3.50 3.37  
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