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 A B S T R A C T

Forest fires pose a serious threat to the environment. Their frequency and intensity have increased in recent 
decades due to climate change and heightened anthropogenic interference. About 21.7% of India’s total land 
is covered by forests, which play a crucial role in biodiversity, ecology, and the livelihoods dependent on 
these ecosystems. However, 36% of these forested regions are prone to frequent and devastating fire. Given 
this vulnerability, predicting forest fires is essential for minimising damage. In this first pan-India study, 
we predict the forest fire occurrence in the most vulnerable regions across India using a dataset spanning 
from 2003 to 2018, incorporating variables such as cloud cover, elevation, forest cover fraction, humidity, 
NDVI, population, soil moisture, temperature, wind speed, and precipitation. We partitioned the data into 
four clusters based on spatial proximity to capture regional patterns. SHAP (SHapley Additive exPlanations) 
values were utilised to enhance model interpretability and provide insights into socio-technical complexities 
unique to different regions. We analysed the Partial Dependence Plots (PDP) to capture the trend of forest fires 
with individual features. The challenge of data imbalance, often encountered in natural hazard prediction, 
was addressed using the Synthetic Minority Over-Sampling Technique for Regression with Gaussian Noise 
(SMOGN) algorithm, which balances regression data. Selecting appropriate machine-learning models and 
adeptly tuning their hyperparameters is a complex process that requires domain expertise. To address this, 
we proposed an automated machine-learning (AutoML) framework that utilises Bayesian optimisation to 
return a best-performing, finely-tuned model. The ‘‘AutoML-FIRE’’ model exhibited robust performance, with 
R values between 0.73 and 0.85 and RMSE values ranging from 3.40 to 6.09, outperforming all considered 
benchmarking algorithms. Furthermore, uncertainty analysis and spatial distribution analysis were conducted 
to validate the model’s stability. Our analysis demonstrates that the AutoML-FIRE model is robust, exhibits 
broad applicability for national-scale fire risk assessment, and enables notifications to authorities and local 
communities regarding impending fire events.
1. Introduction

Forest fires pose a severe threat to the environment and human 
life (Robinne and Secretariat, 2021). Their occurrences drastically re-
duce the productivity of land ecosystems, soil degradation, and release 
of significant amounts of carbon into the atmosphere (Sannigrahi et al., 
2020; Pérez-Cabello et al., 2012; Seibert et al., 2010; Venkatesh et al., 
2020). The rise in global temperatures has been identified as a key 
driver of the increasing incidence of forest fires. This trend has been 
starkly illustrated by recent catastrophic fire events in regions such as 
California, Australia, and the Amazon, that destroyed several square 
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kilometres of forest area (Attri et al., 2020; Boer et al., 2020). Glob-
ally, about 80% instances of forest fires constitute in savannahs and 
grasslands across North and South America, Australia, Africa, and South 
Asia (Schultz et al., 2008).

In recent years, India has experienced a significant uptick in the 
occurrences of forest fires. In many instances, they are primarily driven 
by human activities, including land preparation for agriculture, defor-
estation, controlled burns, and the collection of forest products (Reddy 
et al., 2019). In South Asia, about 32.2% of forest fire instances 
are from India alone. Their occurrences are concentrated in specific 
hotspot regions (Ahmad and Goparaju, 2019). The regional variability 
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data mining, AI training, and similar technologies. 
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of forest fires in India is mainly due to geographical diversity and varied 
topography, climate conditions, vegetation, and forest types. This poses 
a challenge for developing a universal predictive model for India to 
predict forest fires. Identifying the key variables influencing forest fires 
and determining their relative importance is another complex task. It is 
further complicated by the imbalanced nature of forest fire data, where 
events are rare but have severe consequences.

Machine learning (ML) models can be a very useful tool to predict 
forest fires accurately. However, the success of these models largely 
depends on the quality of the input data and careful selection and 
tuning of the hyperparameters of the model. Further, addressing the 
data imbalance and regional variability is challenging. To overcome 
these limitations,this study proposes a generalised automated machine-
learning model (‘‘AutoML-FIRE’’) for pan-India by leveraging Bayesian 
optimisation to predict forest fires. This study also seeks to investi-
gate the underlying dynamics of causative factors of forest fires at 
both national and regional scales. This is achieved through SHapley 
Additive exPlanations (SHAP) analysis, which provides a detailed in-
terpretation of feature importance and contributes to understanding 
the socio-technical dimensions specific to different regions. This study 
enhances predictive capabilities for forest fires while providing a robust 
framework to address regional variability and data imbalance across 
India.

2. Related works

Machine learning models to predict forest fires have gained con-
siderable momentum, ranging from fire spread prediction to the de-
ployment of early warning systems (Wijayanto et al., 2017; Radke 
et al., 2019). A noteworthy case study by Yang et al. (2021) introduced 
a machine learning model named Agni, capable of predicting forest 
fires up to one month in advance. This model achieved an area under 
the receiver operator characteristic (ROC) curve greater than 0.81. 
However, the model did not incorporate key meteorological parameters 
like precipitation and soil moisture, nor did it account for human 
activities, which could have enhanced its robustness.

To improve the accuracy and efficiency of fire management strate-
gies, Xu et al. (2022) developed a model for predicting forest fire spread 
using a cellular automata (CA) framework combined with least squares 
support vector machines (LSSVM). This LSSVM-CA model accounted 
for the effects of adjacent wind on fire spread, but it heavily relied on 
vegetation data, potentially limiting its accuracy in regions with sparse 
or inaccurate vegetation information.

Vega-Garcia et al. (1996) utilised neural networks to predict human-
induced wildfire occurrences. Logistic regression analysis served as the 
‘‘domain expert’’ to identify important input variables, resulting in a 
model that correctly predicted 85% of no-fire observations and 78% of 
fire observations. However, manually adjusting hyperparameters such 
as learning rate and network architecture is time-consuming and re-
quires significant expertise. An automated framework could potentially 
improve the accuracy and reliability of such models by optimising 
hyperparameters automatically.

Cortez and Morais (2007a,b) explored the development of a cost-
effective, real-time forest fire prediction tool using readily available 
meteorological data. They employed support vector machines (SVM) 
and random forests (RF), alongside four distinct feature selection se-
tups. Although this model was tested on real-world data from the 
northeast region of Portugal, its ability to predict large fires could be 
enhanced by incorporating additional information such as vegetation 
type and firefighting interventions.

The influence of demographic factors on forest fire predictions has 
also been studied. Kang et al. (2020) made progress in fire risk predic-
tion by integrating road and population data, leading to more granular 
spatiotemporal patterns. Similarly, Kim et al. (2019) demonstrated 
a direct relationship between population density and forest fire risk 
2 
through the incorporation of socioeconomic trends in machine learning 
models.

Despite significant global advancements, research on forest fires 
prediction in India remains limited. Babu et al. (2023) demonstrated 
the effectiveness of ensemble-based machine learning models for fire 
prediction in the Western Ghats region, showcasing the potential of 
advanced techniques in specific ecological zones. Similarly, Saha et al. 
(2023) focused on the Ayodhya hills, identifying forest fire suscepti-
bility zones using RF, multivariate adaptive regression splines (MARS), 
and deep learning neural networks (DLNN), contributing valuable in-
sights into regional fire risk. However, these studies are confined to 
particular regions, and there is a noticeable absence of comprehensive 
research on a pan-India level. Such studies are crucial for understanding 
the broader patterns and drivers of forest fires across diverse ecological 
and climatic zones in India. A pan-India approach is essential for 
stakeholders to develop robust, scalable forest management strategies 
and policy frameworks that can address the varying fire risks across the 
country’s extensive and diverse landscapes.

Overall, the main challenge in forest fire prediction systems appears 
to be integrating diverse indicators to produce accurate, consistent, and 
computationally efficient predictions. Manual selection of algorithms 
can introduce biases, and optimising hyperparameters across differ-
ent models often lacks a standardised approach. AutoML frameworks 
provide a solution by automating these processes, reducing biases, 
and enhancing model performance (Singh et al., 2022, 2024; Kumar 
et al., 2024). They have demonstrated promising performance in forest 
fire prediction tasks, but these applications have been focused on the 
classification domain (Zhang and Pan, 2024; Su et al., 2024; Kong, 
2024). In this study, we propose an AutoML framework for forest fire 
count prediction, representing the first such comprehensive study con-
ducted on a pan-India scale. The implementation of AutoML enhances 
hyperparameter tuning, effectively addressing the gaps identified in 
earlier studies. In addition, we tackle the issue of imbalanced data 
distribution using the SMOGN algorithm and broaden the scope of 
previous research by incorporating both socio-economic factors and 
meteorological parameters.

3. Study area

The Indian landmass has been classified into 16 distinct climate 
zones (Beck et al., 2018). The northern and northeastern areas, with 
temperate climates and monsoonal rains, sustain dense vegetation, 
increasing fire risk in the dry periods. Conversely, arid and semi-arid 
zones in the western and central regions are particularly fire-prone due 
to hot, dry conditions that intensify fuel combustibility. The varying 
topography from the Himalayas and Western Ghats to the Deccan 
Plateau, creates a heterogeneous landscape where fire dynamics vary 
considerably. For example, steep slopes in the northern and western 
regions can expedite fire spread, while flat plains influence ignition 
patterns and fire intensity. Vegetation types, such as tropical dry de-
ciduous, evergreen, montane, and thorn forests, add to this complexity, 
as each exhibits unique fire susceptibility due to distinct fuel loads and 
seasonal dryness (Roy and Purohit, 2018).

According to a report of the Indian State of Forest Report (ISFR) 
2021, forests occupy 21.7% of the geographical area of which the 
states of Madhya Pradesh, Arunachal Pradesh, Chhattisgarh, Odisha, 
and Maharashtra have significant forested areas that can be suscep-
tible to forest fires. To conduct an in-depth analysis of forest fire 
risks, this study employs a grid-based approach, segmenting India into 
0.25◦ × 0.25◦ cells. This enables a granular examination of fire-prone 
regions, supporting more targeted prediction and mitigation efforts 
across diverse Indian landscapes.
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4. Material and methods

4.1. Data

We compiled the forest fire occurrences in India from 2003 to 2018. 
We have downloaded the forest fire data from the Forest Survey of 
India (FSI) website (https://fsiforestfire.gov.in/index.php). This dataset 
includes forest fire data points derived from the Fire Information for Re-
source Management System (FIRMS), which utilises MODIS (Moderate 
Resolution Imaging Spectroradiometer) observations. Corresponding to 
the forest fire events, we obtained the daily minimum and maximum 
air temperature (Tasmin [◦C] and Tasmax [◦C]) measured at a height 
of 2 m above the Earth’s surface at spatial resolution 1◦ × 1◦ from 
the Climate Data Store (Copernicus Climate Change Service, Climate 
Data Store, 2021). We have downloaded the daily gridded precipitation 
[mm∕day] at a spatial resolution of 1◦×1◦ from the Global Precipitation 
Climatology Project (GPCP dailyv1.3) and CDS (Adler et al., 2020). We 
have also used the agrometeorological indicators such as daily mean 
wind speed [m∕s] at 10 m above the surface, cloud cover fraction over 
24 h, and relative humidity (%) at 09:00 AM local time at 2 m above 
the surface. These indicators are obtained from the ERA5 reanalysis 
product at a high spatial resolution of 0.1◦ × 0.1◦ (Boogaard et al., 
2020). We downloaded the 30 arc seconds global digital elevation 
model (DEM) GTOPO30 from the U.S. Geological Survey’s (USGS) 
Center for Earth Resources Observation and Science (EROS) (Earth 
Resources Observation and Science Center, U.S. Geological Survey, 
U.S. Department of the Interior, 1997) (see Table  1). We acquired 
the Normalised Difference Vegetation Index (NDVI) at a daily time 
scale with a spatial resolution of 0.05◦ × 0.05◦ from the National 
Oceanic and Atmospheric Administration (NOAA) Climate Data Record 
(CDR) of AVHRR Surface Reflectance (Vermot, 2022). We obtained 
the annual forest cover fraction (FCF) data [%], at a spatial resolu-
tion 0.5◦ × 0.5◦, from ICDC, CEN, University of Hamburg (DiMiceli 
et al., 2022). Population density is also an important parameter that 
influences fire risk. To incorporate this in our study, we obtained 
the population count data from the Gridded Population of the World, 
Version 4 (GPWv4) dataset by CIESIN at Columbia University (Center 
for International Earth Science Information Network-CIESIN-Columbia 
University, 2018). This provides the population counts for 2000, 2005, 
2010, 2015, and 2020 at a spatial resolution of 0.25◦ × 0.25◦, consistent 
with national censuses and population registers.

4.2. Data processing

The fire count data is a point measurement, each point represents 
the location of a single fire occurrence. We convert this to the grid 
data format at a spatial resolution of 0.25◦ × 0.25◦ by summing the 
number of fire points within each grid cell for each day. Accordingly, 
using nearest neighbour interpolation, we have resampled all the input 
variables to a uniform resolution at 0.25◦ × 0.25◦. The elevation data 
(GTOPO30) was originally available at a 1 km spatial resolution, we 
have converted it to a 0.25◦ ×0.25◦ grid resolution, by averaging all the 
values lying inside the grid of targeted resolution, providing a constant 
value for each grid cell. For the variables having a frequency of record 
less than daily, we convert them to daily time resolution by assigning 
the same value for each day of the corresponding period.  Gholami et al. 
(2021) have shown that historical rainfall data can be used to predict 
fire occurrences. We have used the average rainfall of previous year 
to capture the long-term effects of rainfall on the occurrence of forest 
fires.

Forest fire occurrence is governed by a complex interplay of meteo-
rological, topographic, and ecological factors that exhibit strong spatial 
dependencies. Many forest fires are caused by human activity, with 
such anthropogenic sources being particularly localised, especially in 
community-driven countries like India. This trend further reinforces the 
concept of spatial clustering. Clustering grids based on spatial proximity 
3 
provides a physically meaningful way to segment the study area into 
distinct fire-prone regions with shared environmental conditions that 
drive fire behaviour. To perform clustering, we first identified the grids 
having the top 10%, 20%, and 30% of the total fire count in the forest 
fire time series data from 2003–2018. After initial computations, it was 
found that the top 30% grids provided the most promising results and 
were subsequently used for further analysis. We segment this fire count 
data into 4 clusters (Fig.  1b) based on their spatial proximity using the 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
algorithm. We set the clustering parameters 𝜖 = 1.3 and minsamples = 10. 
The 𝜖 is the maximum distance between two samples used as a criterion 
for a cluster. The minsamples specifies the minimum number of samples 
required to form a cluster.

4.3. Feature importance and association

SHAP (Shapley Additive exPlanations) introduced by Lundberg and 
Lee (2017) quantify the effect of a feature i on the model’s prediction 
by training the model twice. First including the feature i (𝑓𝑆∪{𝑖}) and 
then without the feature i (𝑓𝑆 ). The term 𝑆 represents a subset of the 
feature set 𝑇 , excluding feature i (𝑆 ⊆ 𝑇 ⧵ {𝑖}). The difference between 
these two model outputs, 𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆 (𝑥𝑆 ), measures the impact 
of feature i on the model’s prediction. SHAP values are computed as 
weighted averages of these differences (Eq.  (1)). 

𝜙𝑖 =
∑

𝑆⊆𝑇 ⧵{𝑖}

|𝑆|! (|𝑇 | − |𝑆| − 1)!
|𝑇 |!

[

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆 (𝑥𝑆 )
]

(1)

SHAP is an additive feature attribution method, meaning that the 
sum of the effects of all feature attributions approximates the original 
model output, as shown in Eq.  (2). 

𝑓 (𝑥) = E[𝑓 (𝑥)] +
𝑇
∑

𝑖=1
𝜙𝑖 (2)

In this study, we used Tree SHAP implementation from the SHAP
Python library to compute Shapley values (Lundberg et al., 2018). The 
SHAP feature importance method identifies the most influential fea-
tures based on the magnitude of their absolute Shapley values (Molnar, 
2022). To obtain a global understanding of feature importance, we 
calculate the average absolute Shapley value for each feature from Eq. 
(3). 

𝐼𝑖 =
1

𝑁𝑜𝑏𝑠

𝑁𝑜𝑏𝑠
∑

𝑗=1
|𝜙(𝑗)

𝑖 | (3)

where 𝑁𝑜𝑏𝑠 denotes the number of observations.
Additionally, it is crucial to ensure that input features exhibit min-

imal correlation for optimal machine learning model performance. 
Highly correlated features can destabilise the model, leading to in-
accurate estimations (Singh et al., 2021, 2024). To analyse feature 
correlations, we have plotted the feature association matrix, which 
quantifies the similarity between decision rules in partitioning data, 
measuring how closely potential splits align with the final optimal split 
during tree growth (Bhadani et al., 2024). This is done to ensure that 
multicollinearity does not adversely affect the model’s performance.

4.4. Feature sensitivity

We employed Partial Dependence Plots (PDPs), as proposed by
Friedman (2000), to visualise the relationship between the target vari-
able and individual features. PDPs offer insight into how the predicted 
target value changes as a function of a single feature while averaging 
out the effects of all other features. This approach allowed us to 
observe how the feature impacts the model’s predictions on average. 
The mathematical formulation for the partial dependence of the 𝑖th 
feature can be written according to Eq.  (4). 

𝑓 (𝑥𝑖) =
1

𝑁

𝑁𝑜𝑏𝑠
∑

𝑓 (𝑥𝑖, 𝑥
(𝑗)
𝑇 ⧵{𝑖}) (4)
𝑜𝑏𝑠 𝑗=1

https://fsiforestfire.gov.in/index.php
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Table 1
Detailed description of datasets used in this study, such as data source, and spatio-temporal resolution.
 Data Units Source Temporal resolution Spatial resolution  
 Fire count (Target 
variable)

Count Forest Survey of India (FSI) Time of occurrence Point data  

 Wind speed m∕s ERA 5 Reanalysis product 
Agrometeorological indicators 
(Sourced from CDS) 

Daily 0.1◦ × 0.1◦
 

 Cloud cover Dimensionless  
 Humidity %  
 Minimum 
temperature

◦C
BERKEARTH dataset 
(Sourced from CDS) Daily 1◦ × 1◦

 

 Maximum 
temperature

 

 Rain mm GPCP daily v1.3 (Sourced 
from CDS)

Daily 1◦ × 1◦  

 Soil moisture kg∕m3 NASA GES DISC Daily 0.25◦ × 0.25◦  
 NDVI (Normalised 
Difference 
Vegetation Index)

Dimensionless NOAA CDR Daily 0.05◦ × 0.05◦  

 Forest cover fraction % Dataset created by ICDC, CEN 
University of Hamburg

Annual 0.5◦ × 0.5◦  

 Population Count Gridded Population of the 
World (GPWv4)

Constant value 0.25◦ × 0.25◦  

 Elevation m GTOPO Constant value 0.0083◦ × 0.0083◦  
Fig. 1. The study area map shows the occurrence and distribution of forest fire events in India. (a) shows the spatial distribution of forest fires from 2003 to 2018. (b) shows 
the centre point of the 0.25◦ × 0.25◦ grid with the top 30% of forest fire events. Further, these grids are classified as four clusters, namely South & West (yellow), Center & East 
(green), North-East (blue), and North (cyan) regions, and noise grids from the clusters are shown with purple points. (c) shows the temporal variability of daily forest fire counts 
from 2003 to 2018.
where 𝑥(𝑗)𝑇 ⧵{𝑖} represents the fixed values of all other features for the 𝑗th 
observation, and 𝑁𝑜𝑏𝑠 is the total number of observations in the dataset.

In addition to PDPs, we utilised Individual Conditional Expectation 
(ICE) plots, introduced by Alex Goldstein and Pitkin (2015), to further 
4 
investigate feature sensitivity at the individual observation level. While 
PDPs provide an averaged effect across all observations, ICE plots 
disaggregate this effect, showing how predictions change for each ob-
servation as a particular feature varies. This allows for the examination 
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Fig. 2. The flowchart illustrates the detailed methodology used for predicting forest fire counts. The processes inside the red dashed box represent the preparation of features 
from input datasets. The blue dashed box depicts the model development. The following two boxes at the bottom represent model evaluation and comparison with benchmark 
algorithms.
of heterogeneous effects, revealing patterns that may be hidden in 
PDPs. The ICE plot for the 𝑗th observation is computed as follows: 

𝑓𝑗 (𝑥𝑖) = 𝑓 (𝑥𝑖, 𝑥
(𝑗)
𝑇 ⧵{𝑖}) (5)

ICE plots help to highlight how individual predictions vary in 
response to changes in a specific feature, whereas PDPs offer a global 
view by displaying the average effect of the feature across the entire 
dataset.

4.5. Data generalisation

Fire count shows high frequency of lower values, leading to a 
skewed distribution. Details on this are explained in the Fig.  1 of 
the supplementary material. To address this, we used the Synthetic 
Minority Over-Sampling Technique for Regression with Gaussian Noise 
(SMOGN) proposed by Branco et al. (2017). It combines random under-
sampling (Torgo et al., 2013, 2015) with two oversampling tech-
niques; SmoteR (Torgo et al., 2013) and the introduction of Gaussian 
noise (Branco et al., 2016). Initially, a relevance function, as pro-
posed by Torgo and Ribeiro (2007) and Ribeiro (2011), is defined 
using the target variable sample distribution to map the target vari-
able values to a relevance scale ranging from 0 to 1. The SMOGN 
algorithm categorises the data into two using the relevance function; 
BinsR and BinsN. The SMOGN partitions in BinsN undergo random 
under-sampling, whereas the rare samples in BinsR are subject to over-
sampling. For each seed example in BinsR, synthetic cases are generated 
using either SmoteR or Gaussian noise, depending on the distance to the 
selected k-nearest neighbour. If the neighbour is within a ‘‘safe’’ dis-
tance, SmoteR is employed; otherwise, a Gaussian noise is introduced. 
The safety threshold is set at half the median distance between the seed 
and other examples within the same partition. Finally, we normalised 
all eleven features and utilised them in training for the prediction 
of forest fire count using the AutoML-Fire algorithm. To do so, we 
have used a Python implementation of SMOGN provided by Kunz 
(2020). The k parameter was set 5, where k specifies the number of 
neighbours to consider for interpolation used in over-sampling, and 
the samp_method (sampling method) was set to ‘balance’ to ensure the 
synthetic data points do not deviate much from real-world data points.
5 
4.6. AutoML-FIRE

Model selection is a critical phase in predicting any target variable. 
This process not only requires identifying an appropriate model but also 
involves the systematic evaluation of a wide range of hyperparameters, 
as these hyperparameters significantly affect the model’s performance. 
Given the large number of possible hyperparameter configurations, 
manual tuning becomes both time-consuming and impractical. Further-
more, this manual approach lacks a standardised method for ensuring 
optimal model selection. Fine-tuning hyperparameters to maximise 
performance for a specific target variable also demands a deep under-
standing of the model architecture and the nature of the target variable, 
often making the task highly challenging and unfeasible.

To streamline the process of model selection and hyperparameter 
tuning, we utilise a standardised Automated Machine Learning (Au-
toML) framework that leverages Bayesian optimisation to identify and 
fine-tune the most effective model for the given data. The algorithm 
driving this framework is outlined in Algorithm 1. The next subsec-
tion details the workings of the Bayesian optimisation technique used 
within our framework, while the following subsections describe the 
individual models evaluated in this study. A detailed methodology of 
AutoML-FIRE is shown in Fig.  2.

4.6.1. Bayesian optimisation
Bayesian optimisation (BO) employs Bayes’ theorem to identify 

the maximum or minimum of an objective function efficiently. In 
contrast to conventional methods like random search or grid search, 
BO accelerates the optimisation process by incorporating knowledge 
from previous evaluations. This approach constructs a probabilistic 
model, known as a surrogate function, based on past observations to 
approximate the true objective function. A commonly used surrogate 
model in BO is the Gaussian Process (GP), as expressed in Eq.  (6). 
𝑓 (𝑥) ∼ (𝜇(𝑥), 𝐶𝑣(𝑥, 𝑥′)) (6)

Here, 𝑓 (𝑥) follows a Gaussian distribution with a mean function 𝜇(𝑥)
and covariance 𝐶𝑣(𝑥, 𝑥′). The covariance between any two points, 𝑥 and 
𝑥′, is modelled using a radial basis function (RBF) kernel according 
to Eq.  (7): 

𝐶𝑣(𝑥, 𝑥′) = exp
(

−1
2
‖𝑥 − 𝑥′‖2

)

(7)
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Algorithm 1 Pseudocode for AutoML-FIRE algorithm.
1: Inputs: fire_dataset (Input dataset), fire_target (Response variable)
2: Outputs: optimal_model (Best predictive model), optimal_hyperparams (Best hyperparameters)
3: function AutoML-FIRE(fire_dataset, fire_target)
4:  optimal_model ← None
5:  highest_score ← −∞
6:  train_data, validation_data ← split_data(fire_dataset, split_ratio = 0.7)
7:  model_set ← [FFNN, SVR,GPR,RF,Boosting,BDT, LR,KR] ⊳ Model pool
8:  num_threads ← number of processors available for parallel computing
9:  Parallel Execution ⊳ Parallelising model training
10:  for each model_type ∈ model_set in parallel using num_threads do
11:  optimal_hyperparams ← Bayesian_Tuning(model_type, train_data, fire_target)
12:  score_total ← 0
13:  for fold ∈ cross_validation_folds(train_data,num_folds) do
14:  trained_model← model_type.train(fold.train_data, fire_target, optimal_hyperparams)
15:  fold_score← model_type.evaluate(fold.val_data, fire_target)
16:  score_total += fold_score
17:  end for
18:  average_score ← score_total∕num_folds
19:  if average_score > highest_score then
20:  highest_score ← average_score
21:  optimal_model← trained_model
22:  end if
23:  end for
24:  return optimal_model
25: end function
26: function Bayesian_Tuning(model_type, train_data, fire_target)
27:  hyperparam_space ← model_type.get_hyperparameter_space()
28:  function Objective(hyperparams)
29:  candidate_model ← model_type.train(train_data, fire_target,hyperparams)
30:  val_score ← model_type.evaluate(validation_data, fire_target)
31:  return val_score
32:  end function
33:  optimal_hyperparams ← Bayesian_Optimisation(Objective,hyperparam_space)
34:  return optimal_hyperparams
35: end function
36: function Bayesian_Optimisation(Objective,hyperparam_space)
37:  optimal_hyperparams ← optimise(Objective,hyperparam_space)
38:  return optimal_hyperparams
39: end function
This surrogate function is significantly easier to optimise compared 
to the original objective function, enabling BO to perform more efficient 
hyperparameter tuning. The next set of hyperparameters is selected by 
an acquisition function, which identifies the point in the search space 
where the surrogate function predicts the most promising performance. 
This approach ensures that BO iteratively improves the model’s per-
formance by prioritising hyperparameters with the highest expected 
improvement.

4.6.2. Feed-forward neural network
Feed-forward neural networks (FFNN) operate without loops, allow-

ing information to flow in a single direction (Singh and Gaurav, 2024). 
The fundamental architecture of an FFNN consists of an input layer, 
an output layer, and hidden layers, each containing a specific num-
ber of nodes serving as data-processing units. Each layer is governed 
according to Eq.  (8)

𝑦𝑗 = 𝑓 (
𝑖

∑

𝑖=1
𝑤𝑖𝑗 ⋅ 𝑥𝑖 + 𝑏𝑗 ) (8)

where 𝑦𝑗 is the output of the 𝑗th node of the current layer, 𝑥𝑖 is 
incoming values from the 𝑖th node of the previous layer, 𝑤𝑖𝑗 are the 
weights assigned to the connections between the nodes of the current 
layer and previous layer, 𝑏𝑗 is the bias of the current layer and 𝑓 () is 
the activation function such as Sigmoid, ReLU, tanh, etc.
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4.6.3. Gaussian process regression
Gaussian process regression proposed by Rasmussen et al. (2004) is 

a non-parametric model, which uses a Bayesian regression approach. 
It takes into account the uncertainties of the model’s output. For ease 
of understanding, only one input feature is assumed for explanation. 
Before considering any data, GPR defines a prior distribution with 
the assumption that the function values 𝑓 = [𝑓 (𝑥1), 𝑓 (𝑥2),… , 𝑓 (𝑥𝑛)]
have a joint multivariate normal distribution given the training set 
𝐷 = {𝑥𝑖, 𝑦𝑖}

𝑛𝑜𝑏𝑠
𝑖=1 , where 𝑦𝑖 is adjusted so that the mean is 0. 

𝑓 ∼  (0, 𝐾) (9)

where 𝐾 = 𝐾𝑋,𝑋 = 𝜅(𝑥𝑖, 𝑥𝑗 |𝜏) is the covariance matrix also called 
the kernel function, and 𝜏 is the set of its hyper-parameters. The 
most common kernel is the Radial Basis function (RBF) kernel given 
according to Eq.  (10)

𝜅(𝑥𝑖, 𝑥𝑗 |𝜏) = 𝜎2𝑒𝑥𝑝(−1
2
(
‖𝑥𝑖 − 𝑥𝑗‖

𝑙𝑠
)2) (10)

where 𝜎 is the noise term, and 𝑙𝑠 is the length scale. GPR then updates 
the prior distribution, assuming the target values are noisy observations 
of a true function 𝑓 : 
𝑦𝑖 = 𝑓 (𝑋𝑖) + 𝜖𝑖 (11)

where 𝜖𝑖 is the noise term and is assumed to follow a normal distribu-
tion, 𝜖 ∼  (0, 𝜎2). For making predictions, we assume that the training 
𝑖 𝜖
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targets 𝑦 and the function that predicts the values for test data 𝑓 ∗

follows a multivariate normal distribution 
[

𝐲
𝐟∗

]

∼ 

([

0

0

]

,

[

𝐾𝑋,𝑋 + 𝜎2𝜖 𝐼 𝐾𝑋,𝑋∗

𝐾𝑋∗ ,𝑋 𝐾𝑋∗ ,𝑋∗

])

(12)

From the above joint distribution, the posterior distribution of 
the test function values 𝑓 ∗, given the training data 𝐷, is a normal 
distribution with mean 𝜇∗ and covariance 𝛴∗. 
𝑓 ∗

|(𝑋∗, 𝐷) ∼  (𝜇∗, 𝛴∗) (13)

where 
𝜇∗ = 𝐾𝑋∗ ,𝑋

[

𝐾𝑋,𝑋 + 𝜎2𝜖 𝐼
]−1 𝐲 (14)

𝛴∗ = 𝐾𝑋∗ ,𝑋∗
−𝐾𝑋∗ ,𝑋

[

𝐾𝑋,𝑋 + 𝜎2𝜖 𝐼
]−1 𝐾𝑋,𝑋∗ (15)

where 𝜇∗ represents the prediction of the function for test inputs and 
𝛴∗ represents the uncertainty of these predictions.

4.6.4. Support vector regression
Support vector regression (SVR) modifies the well-known SVM for 

regression tasks where the aim is to find a classifying hyperplane (Vap-
nik et al., 1996). For non-linear relationships, where the data is not 
linearly separable in the original feature space, kernels are employed 
to map the data into a higher dimensional space. SVR is then applied 
to this transformed data in the higher dimension feature space. The 
hyperplane separating the data can be obtained from Eq.  (16)
�⃗� ⋅ �⃗� − 𝑏 = 0 (16)

where �⃗� is the position vector of the hyperplane, �⃗� is the weight vector 
normal to the plane, which has the dimensions of that of �⃗�, and 𝑏 is the 
intercept or bias term.

Given the training set with 𝑚 features {�⃗�𝑖, 𝑦𝑖}𝑛𝑜𝑏𝑠𝑖=1  where 𝑥𝑖 =
[𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑚] we estimate �⃗� where �⃗� = [𝜔1, 𝜔2,… , 𝜔𝑚] according 
to Eq.  (17)

Minimise: 1
2
‖�⃗�‖2 + 𝐶

𝑛
∑

𝑖=1
(𝜉𝑖 + 𝜉∗𝑖 ) (17)

subject to: 
𝑦𝑖 − �⃗� ⋅ 𝑥𝑖 − 𝑏 ≤ 𝜖 + 𝜉𝑖
�⃗� ⋅ 𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝜉∗𝑖

𝜉𝑖, 𝜉
∗
𝑖 ≥ 0

(18)

where 𝜖 is the margin of tolerance which is the range where no penalty 
is given to error, 𝜉𝑖 and 𝜉∗𝑖  is called the slack variables which allow 
some error beyond 𝜖 but puts a penalty on the misclassification, 𝐶 is 
called the box constraint which is a regularisation parameter (prevents 
overfitting) which puts weights on this misclassification penalty. This 
value determines the trade-off between the 𝜖 and the amount up to 
which deviations larger than 𝜖 are tolerated.

4.6.5. Ensemble learning
Ensemble learning models combine the predictions of multiple weak 

learners, such as decision trees. Doing so enables the ensemble learning 
models to produce better results than individual models and also re-
duces the chances of overfitting, which is a frequent challenge encoun-
tered in decision trees. The different methods of creating assemblages 
are bagging, boosting, and stacking.

In boosting, the model is sequentially trained to correct the prede-
cessor’s errors. The method used in this study is Least-Squares Boosting 
(LSBoost) (Breiman, 2001; Hastie et al., 2009). The algorithm initialises 
by training some weak learners on the data, or often it just takes the 
mean of all observations 𝑦𝑖. Then it calculates the errors between the 
observed and the initialised values 𝑦𝑖. The error is calculated using the 
mean squared error (MSE) method. Then, it iteratively trains and fits 
a learner, such as a decision tree, in which the target variable is the 
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error of the ensemble of all the previous learners to minimise the MSE. 
Thus, the prediction is given by 
𝑦𝑖 = 𝑦𝑖 + 𝜂𝑓 (𝑥𝑖) (19)

where 𝑓 (𝑥𝑖) is the aggregated response from all the weak learners and 
𝜂 is the learning rate.

4.6.6. Kernel regression
Similar to SVR, kernel regression maps the original feature space to 

a higher dimension using the kernel trick (Hainmueller and Hazlett, 
2014). Unlike SVR, the kernel regression fits a linear model to this 
transformed data in higher dimension space by using the least square 
regression method. Thus, by using a kernel, the algorithm can find a lin-
ear model in a transformed, high-dimension space, which is equivalent 
to a nonlinear model in the original, lower-dimension space.

4.6.7. Binary decision tree
A decision tree is a hierarchical model that recursively partitions the 

input space into two by making binary decisions at each node based on 
feature values (Breiman, 2017). The goal is to find an optimal split for 
a node 𝑡 according to some splitting criteria (Loh and Shih, 1997). The 
splitting criterion utilised here is a mean squared error (MSE), other 
well-known criteria are Gini impurity, Variance reduction, etc.

Given a training set with 𝑚 features {𝑋𝑖, 𝑦𝑖}
𝑛𝑜𝑏𝑠
𝑖=1  where 𝑋𝑖 =

[𝑥1, 𝑥2,… , 𝑥𝑚], for finding the optimal split at node 𝑡, for each feature 
𝑥𝑗 we calculate the weighted MSE and probability that an observation 
is in node 𝑡 by 
𝜖𝑇 =

∑

𝑖∈𝑇
𝜔𝑖(𝑦𝑖 + �̄�𝑇 )2 (20)

𝑃 (𝑇 ) =
∑

𝑖∈𝑇
𝜔𝑖 (21)

where 𝑇  is the set of observations in the node 𝑡, 𝜔𝑖 is the weight of 
𝑖th observation, 𝑤𝑖 = 1

𝑛  if not specified, 𝑦𝑖 is the target value for 𝑖th 
observation and �̄�𝑇  is the mean of all observations in node 𝑡.

Before splitting, all the values in each feature 𝑥𝑗 are sorted in 
ascending order. Subsequently, observations in node 𝑡 are split into the 
left child node (𝑡𝐿) and right child node (𝑡𝑅) according to a splitting 
candidate. BDT evaluates all potential splits for each predictor 𝑥𝑖 and 
selects the split that maximises the reduction in MSE (𝛥𝐼) 
𝛥𝐼 = 𝑃 (𝑇 )𝜖𝑇 − 𝑃 (𝑇𝐿)𝜖𝑡𝐿 − 𝑃 (𝑇𝑅)𝜖𝑡𝑅 (22)

where 𝑃 (𝑇𝐿) and 𝑃 (𝑇𝑅) are the probabilities of observations being in 
the left and right child nodes, respectively, and 𝜖𝑡𝐿  and 𝜖𝑡𝑅  are the 
weighted MSEs of the left and right child nodes, respectively.

4.6.8. Linear regression
Linear regression aims to model a linear relationship between the 

independent variable �⃗� and the dependent variable 𝑦 using statis-
tics (Hastie et al., 2009). If we are given a training set with m features 
{�⃗�𝑖, 𝑦𝑖}

𝑛𝑜𝑏𝑠
𝑖=1 , where 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑚] then we have to find the best fit 

linear equation given by 
𝑓 (�⃗�) = 𝑦 = 𝛽 ⋅ �⃗� + 𝜖 (23)

where �⃗� = [1, 𝑥1, 𝑥2,… , 𝑥𝑚] and 𝛽 = [𝛽0, 𝛽1, 𝛽2,… , 𝛽𝑚] is a vector of 
estimated coefficients and 𝜖 is the error or noise term. The objective is 
to minimise the sum of square residuals (SSR): 

𝑆𝑆𝑅 =
𝑛𝑜𝑏𝑠
∑

𝑖=1
𝑦𝑖 − 𝛽 ⋅ �⃗�𝑖 (24)

where �⃗�𝑖 = [1, 𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑚] and 𝛽 is estimated by Ordinary Least 
Squares (OLS) by using Eq.  (25): 
𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇 𝑌 (25)

where 𝑋 = [𝑋1, 𝑋2,… , �⃗�𝑛𝑜𝑏𝑠], 𝛽 = [𝛽0, 𝛽1, 𝛽2,… , 𝛽𝑚]𝑇 , and 𝑌 =
[𝑦1, 𝑦2,… , 𝑦𝑛𝑜𝑏𝑠 ]

𝑇 . Predictions are done by substituting the new vector 
𝑋  in Eq.  (23).
0
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Fig. 3. SHAP summary (Bee swarm) plot showing all features for each cluster’s top 30% of grids individually. In this plot, the features are arranged in decreasing order of 
importance in each subplot, highlighting the key drivers of forest fire predictions across regions.
5. Results

5.1. Feature importance and association

Fig.  3 presents the SHAP (SHapley Additive exPlanations) bee 
swarm plots for all clusters, illustrating the feature contributions across 
different regions. In these plots, each point represents an individual 
observation, with the 𝑥-axis showing the magnitude of a feature’s 
contribution to the prediction, while the colour gradient indicates the 
scaled feature values. For understanding, blue-shaded points on the 
positive side of the 𝑥-axis indicate that lower feature values contributed 
to an increase in the predicted forest fire count, whereas red-shaded 
points on the positive side suggest that higher feature values played a 
role in increasing the predicted fire count. Features are arranged in 
descending order of their importance within each subplot, enabling 
easy comparison.

Across the Centre & East, South & West clusters, and the combined 
top 30% of grids, population emerges as the most influential feature in 
predicting forest fires. As shown in Fig.  3a, b, and d, higher population 
values correspond to a decrease in forest fire occurrences. This inverse 
relationship likely reflects the fact that high population densities are 
generally concentrated in urban areas where forests are scarce. How-
ever, this trend is not observed in the North cluster (Fig.  3c), where 
the population does not exhibit a clear association with fire counts. 
This exception may be due to the distinct socioeconomic dynamics 
of the North region, where forests are preserved even in areas with 
relatively high population density. The local economy’s dependence 
on eco-tourism and the influx of tourists into forested areas might 
obscure the direct impact of permanent population data on fire counts 
in this region. Authorities should implement regulations to control the 
environmental impact of eco-tourism, particularly in fire-prone forest 
areas, and raise awareness about fire risks among tourists to mitigate 
the potential for human-caused fires in these vulnerable regions.

Another key feature contributing to fire prediction across all clusters 
is humidity. Ranked second in importance in the Centre & East, South 
& West, and combined grids (Fig.  3b, d, e), third in the North-East (Fig. 
8 
3a), and fourth in the North (Fig.  3c), humidity plays a critical role in 
forest fire dynamics. Notably, soil moisture is the top-ranking feature 
in the North-East cluster (Fig.  3a), underscoring its importance in fire 
prediction for that region. Lower humidity values, along with soil mois-
ture and maximum temperature, show a strong positive contribution to 
fire occurrence. This aligns with the physical conditions required for 
fire ignition, where low moisture and high temperatures create a dry 
environment conducive to wildfires (Jain et al., 2022; Mina et al., 2023; 
Chaparro et al., 2015). Since humidity, soil moisture and temperature 
are crucial factors in fire dynamics, fire management policies should 
incorporate real-time monitoring systems for these variables to better 
predict fire risk.

Elevation presents a more mixed impact across clusters, particularly 
in the North-East and North regions. In the North-East, lower elevation 
values are linked to higher fire frequencies, likely due to the prevalence 
of traditional slash-and-burn agricultural practices among the indige-
nous population residing in these lower-altitude areas (Dhar et al., 
2023). In this region, policies should focus on promoting and incen-
tivising sustainable land-use alternatives alongside education programs 
on the environmental and fire risks of slash-and-burn, which can reduce 
its prevalence and mitigate fire risks in the region. Conversely, in the 
North cluster, the relationship between elevation and fire frequency is 
more complex. While very low elevation values tend to correlate with 
fewer fires, high elevation areas do not exhibit a consistent trend. This 
may be due to the presence of lowland plains with sparse forest cover 
within this cluster, which skews the overall pattern, leading to fewer 
fires at lower elevations without a clear relationship at higher altitudes.

To further quantify feature importance, we computed the aver-
age absolute SHAP values for each feature. Fig.  4 shows the ranked 
importance of all features across different clusters, highlighting the 
variability in feature importance based on regional characteristics. This 
visualisation offers a comprehensive view of how feature relevance 
shifts between clusters, providing insights into the regional drivers of 
forest fire occurrence.

Finally, to ensure model robustness, we evaluated feature inter-
dependencies by constructing a feature association matrix (Fig.  5). 
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Fig. 4. The feature importance graph for each cluster shows various feature’s importance scores, calculated by averaging the absolute SHAP values from the bee swarm plot. This 
plot depicts the factors that drive the forest fire count.
Machine learning models perform best when input features are in-
dependent, as multicollinearity between features can degrade model 
accuracy. The feature association matrix allows us to identify any sig-
nificant correlations between features, which, if present, could diminish 
the predictive performance of the model. This step ensures that the 
input features used for prediction are not heavily correlated, preserving 
the integrity of the model’s predictions.

5.2. Feature sensitivity

To understand how individual features impact forest fire counts, we 
plot the PDP and ICE curves for the top 30% grids across India. These 
visualisations reveal the overall trends in forest fire behaviour as key 
features vary.

The cloud cover trend in Fig.  6a shows that high cloud cover 
corresponds to a reduced number of forest fires. This is expected, 
as increased cloud cover diminishes the intensity of solar radiation 
reaching the Earth’s surface, thereby reducing the likelihood of fire ig-
nition (Pfister et al., 2003). For elevation, the pattern is more complex, 
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displaying an undulating trend for most of the range but showing a 
sudden spike at around 4000 m, followed by a steep increase. This spike 
is likely due to the presence of natural forests in the Himalayan grids, 
which are known for their high forest density (Fig.  6b).

The relationship between forest cover fraction and fire count, as 
depicted in Fig.  6c, shows a clear upward trend. Greater forest cover 
provides more available fuel, thereby increasing the potential for forest 
fires. Similarly, the NDVI exhibits an inverse relationship with for-
est fire counts–lower NDVI values, which indicate deteriorating plant 
conditions and lower fuel moisture content (FMC), lead to higher fire 
activity (Chuvieco et al., 2004; Maselli et al., 2003) (Fig.  6e). However, 
the increase in fire count after an NDVI value of 0.5 likely reflects 
the higher biomass (fuel) availability in densely vegetated regions, 
combined with seasonal or drought-induced drying, which increases 
fire susceptibility.

Both humidity and maximum temperature are significant drivers 
of forest fires. As shown in Fig.  6d and i, decreasing humidity and 
increasing temperatures are closely associated with a rise in fire counts, 
a trend that aligns with existing research (Jain et al., 2022; Mina et al., 
2023).
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Fig. 5. The feature association estimates heat map illustrates the correlation of all the 
features used for fire count prediction.

The relationship between population and forest fires, shown in Fig. 
6f, appears counterintuitive. While the PDP line suggests an opposite 
trend, it is important to note that high population values (represented 
by the blue dots) are primarily associated with urban areas, which 
generally lack forests and, therefore, have fewer fires.

In Fig.  6g, the trend between the previous year’s average rainfall 
and fire count is positive, indicating that higher rainfall promotes tree 
growth, which can subsequently provide more fuel for fires (Toledo 
et al., 2011).

The role of litterfall, which refers to dead plant material such 
as leaves, twigs, and bark, is also critical. This material is highly 
flammable and can accelerate the ignition and spread of fires. As seen in 
Fig.  6i and j, litterfall is positively correlated with maximum tempera-
ture and negatively correlated with minimum temperature (Wang et al., 
2021), which explains the observed trends. The negative trend in Fig. 
6j further underscores how hotter and drier conditions are conducive 
to forest fires.

Finally, soil moisture and wind speed exhibit notable relationships 
with fire occurrence. Lower soil moisture is strongly linked to increased 
fire counts, as drier conditions favour fire ignition and spread (Fig. 
6h) (Chaparro et al., 2015). Wind speed shows a decreasing trend 
up to around 2 m∕s, followed by a steady increase (Fig.  6k). This 
is in line with previous studies, which indicate that fire front speeds 
are faster in wind conditions ranging from 2 to 6 m∕s, and that in 
mountainous regions, weak winds combined with local topography can 
heavily influence fire behaviour (Beer, 1991; Brotak, 1991).

5.3. Performance of the AutoML-FIRE

The AutoML-FIRE framework was developed independently for all 
clusters using their respective datasets. To assess the performance of 
AutoML-FIRE, we used 70% of the data for training the model and 
the remaining 30% for testing purposes. The number of data points 
in the training and testing sets for all the clusters is given in Table  2. 
To select the optimal hyperparameters, Bayesian optimisation was em-
ployed to iteratively enhance the model’s performance on the training 
data. This process continues until the maximum number of iterations is 
reached, which ensures that convergence is achieved. For our model, 
the maximum number of iterations was automatically set to 250, based 
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Table 2
Number of data points present in the training and testing split of all clusters.
 Cluster Total Training Testing 
 North-east 48 385 33870 14515  
 Center & East 50 276 35193 15083  
 North 10527 7369 3158  
 South & West 16 487 11541 4946  
 All grids top 30 129949 90964 38985  

on criteria such as convergence checks to balance exploration and 
exploitation, optimising the objective function effectively. During this 
process, the algorithm refines the hyperparameter selection, ensuring 
convergence of the loss function within the allotted iterations. On com-
pletion, the best-performing hyperparameters and the corresponding 
model are returned. The optimisation results are shown in Fig.  7.

The best-performing model for each cluster, returned by AutoML-
FIRE, was evaluated on the testing data to assess its robustness and 
generalisation capabilities. The evaluation metrics, correlation coeffi-
cient (R), root mean square error (RMSE), and bias were calculated 
across the clusters. R values ranged from 0.69 to 0.85, demonstrating 
a strong correlation between predicted and observed fire counts. This 
indicates that the model effectively captures fire-prone conditions. High 
correlation values suggest that the model can differentiate between 
periods of high and low fire activity, enabling proactive decision-
making. RMSE values range from 3.40 to 6.09, representing the average 
deviation between predicted and actual fire counts per grid. In practical 
terms, this means that for the given grid, the predicted fire counts 
typically deviate from the observed values by approximately 3 to 6 
fires per day. This level of error is reasonable given the large area of 
a grid of 0.25◦ × 0.25◦ resolution and the inherent variability of fire 
occurrence, which is influenced by stochastic factors such as sudden 
ignition events (e.g., lightning, human activity) that are not always 
captured in meteorological and environmental data. Bias is calculated 
by taking the average difference between the predicted and observed 
values and ranges from 0.9 to 1.46, which indicates only a slight 
overprediction of less than 1.5 forest fire count per grid per day, which 
is acceptable given the range of the target variable. The evaluation 
metrics for each cluster, along with the number of data points in the 
testing sets and the regression lines between predicted and observed 
fire counts, are presented in Fig.  8.

5.3.1. Error histogram analysis
To analyse the distribution of errors in the predictions made by the 

AutoML-FIRE model on the testing dataset, we performed an error his-
togram analysis. The error was calculated as the difference between the 
observed and predicted fire counts. Histograms with 35 bins displaying 
these errors were plotted for all clusters in Fig.  9. Values to the right 
of the red line represent errors due to overestimation, while those to 
the left represent underestimation. Gaussian curves were fitted to the 
histograms to better understand the error distribution. The peak of the 
Gaussian curve aligns with the zero line, indicating an even distribution 
of errors around zero. This suggests that the model does not exhibit any 
significant bias in predicting forest fire occurrences.

5.3.2. Residual analysis
Residuals are the difference between the predictions of the model 

and the values of the regression line fitted on these predictions. Resid-
ual analysis is done to get a visual representation of the goodness of 
fit of our model. The residuals of the predictions of AutoML-FIRE on 
the testing dataset of all clusters are plotted in Fig.  10. The residuals 
are roughly uniformly distributed above and below the zero line, 
which proves the stochastic nature of the residuals. This confirms 
that the model does not have any inherent bias, and it indicates the 
generalisation capability of our model.
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Fig. 6. Feature sensitivity analysis of the input features for the top 30% grids dataset to understand the trend across India. In the left plot of each subplot, the grey line illustrates 
the ICE curves, the blue dots represent the actual data points used to determine the ICE curves, and the red line represents the PDP line. The right side is the zoomed version of 
the PDP line plotted to observe the trend.
6. Discussion

6.1. Comparison with benchmark algorithms

We test the performance of the AutoML-Fire model with ten widely 
used machine learning and deep learning algorithms; long short-term 
memory (LSTM), linear regression (LR), extreme gradient boosting 
(XGBoost), decision tree (DT), K-nearest neighbour (KNN), artificial 
neural networks (ANN), elastic net, Bayesian regression (BayesReg), 
random forest (RF), polynomial regression (PolyReg), and generalised 
additive model (GAM). The algorithms were evaluated based on three 
key metrics: R, RMSE, and Bias. Table  3 summarises the comparative 
results across all clusters.
11 
The results indicate that AutoML-FIRE consistently outperformed 
all other models in terms of RMSE across every cluster. Although it 
exhibited a slightly lower R in the Center & East cluster and in 30% 
of the grids, the difference was marginal. However, AutoML-FIRE ex-
hibited a relatively higher bias compared to the other algorithms in all 
clusters. Despite this, the bias remained below 1.5, which is within an 
acceptable range given the model’s exceptional performance in terms of 
RMSE and R. These results confirm AutoML-FIRE’s overall effectiveness, 
particularly in achieving superior predictive accuracy across multiple 
metrics.

Analysis of variance (ANOVA) was conducted on the prediction 
errors across all benchmarking algorithms, including AutoML-FIRE, to 
assess the statistical significance of performance differences among 



S. Toraskar et al. Environmental Modelling and Software 193 (2025) 106578 
Fig. 7. Optimisation curve for each cluster depicting the minimum observed and estimated loss as the Bayesian optimisation progresses.
Fig. 8. Evaluation of AutoML-FIRE on testing data. In each subplot, the blue dots illustrate the predicted value vs. the observed value and the red line is the regression line fitted 
to this data. The grey dashed line shows the 1:1 line. The box displays the number of data points in the test set and the values of R, RMSE, and Bias.
the models. The results of the two-way ANOVA test are provided in 
the supplementary material, and those of one-way ANOVA test are 
illustrated in Fig.  11. It demonstrates that KNN, PolyReg, and GAM 
exhibit statistically significant variations in performance across all 
clusters, with the notable exception of the North cluster. In the North 
cluster, no statistically significant differences were observed among the 
benchmarking models, including AutoML-FIRE, suggesting comparable 
performance in this region. However, when analysing data from the 
top 30% of grids, AutoML-FIRE shows a significant divergence in 
performance compared to most of the other models. The models that 
deviate from AutoML-FIRE tend to cluster around zero error, indicating 
that while these models perform similarly to each other, AutoML-FIRE 
achieves distinct and superior outcomes in the top-performing grids.
12 
6.2. Uncertainty analysis of the AutoML-FIRE

The reliability of a model can be assessed by evaluating its ability 
to manage randomness and variability in input data. To evaluate the 
robustness of our model, we performed an uncertainty analysis. In this 
analysis, we introduced uncertainties of ±5% and ±10% in each feature 
individually for 50% of the data points, while keeping the remaining 
dataset constant. AutoML-FIRE was then employed to predict outcomes 
on this modified dataset, and the percentage change in forest fire 
predictions relative to the original dataset was recorded. The results, 
presented in Fig.  12, show that the uncertainty in fire predictions across 
all clusters ranges from −2.87% to 1.82%. These minimal variations 
demonstrate the model’s high reliability. The colour bar scale for 



S. Toraskar et al.

Fig. 9. Histograms of error in predictions of AutoML-FIRE on all clusters. In each sub-plot, the histogram has 35 bins, the black line illustrates the best-fit Gaussian curve on the 
histogram, and the red line indicates the zero error.

Fig. 10. Residuals indicating the difference between the predictions and the fitted regression line. The red dashed line represents the positive and negative RMSE values as a 
reference to determine the spread of residuals.
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Table 3
Comparison with the benchmark algorithm for each cluster.

Cluster Metrics LSTM LR XGBoost DT KNN ANN Elasticnet BayesReg RF PolyReg GAM AutoML-FIRE

R 0.5 0.39 0.73 0.44 0.66 0.5 0.39 0.39 0.71 0.48 0.43 0.74
North-east RMSE 10.56 11.24 8.41 11.01 9.19 10.59 11.24 11.24 8.66 10.71 11.06 5.47

Bias −0.25 0 0.27 0.05 1.15 0.38 0 0 0.59 0.01 −0.02 1.26

R 0.41 0.23 0.72 0.39 0.56 0.42 0.23 0.23 0.7 0.34 0.31 0.69
Centre & East RMSE 7.62 8.14 5.76 7.69 6.92 7.57 8.14 8.14 5.97 7.86 7.96 3.87

Bias 0.13 −0.04 0.34 −0.03 1.16 −0.48 −0.04 −0.04 0.56 −0.02 0 0.99

R 0.48 0.31 0.8 0.62 0.71 0.53 0.31 0.31 0.78 0.46 0.47 0.85
North RMSE 12.5 13.53 8.46 11.22 10.01 12.05 13.53 13.53 8.84 12.66 12.54 6.09

Bias 0.12 0.19 0.52 0.48 1.27 0.49 0.19 0.2 0.77 0.23 0.18 1.46

R 0.51 0.25 0.77 0.5 0.66 0.55 0.25 0.25 0.75 0.34 0.35 0.77
South &West RMSE 6.23 7.04 4.64 6.29 5.43 6.06 7.04 7.04 4.82 6.83 6.79 3.40

Bias −0.19 −0.03 0.35 0.22 0.96 −0.38 −0.03 −0.03 0.46 −0.01 −0.03 0.83

R 0.47 0.28 0.75 0.44 0.65 0.47 0.28 0.28 0.74 0.4 0.35 0.73
All grids top 30 RMSE 9.49 10.32 7.13 9.63 8.16 9.48 10.32 10.32 7.18 9.85 10.04 5.37

Bias −0.13 0.01 0.22 0 1.24 0.67 0.01 0.01 0.6 −0.01 −0.01 1.01
Fig. 11. Comparison of benchmarking algorithms with AutoML-FIRE based on errors in predictions using one-way ANOVA test. In each of the subplots, the blue bar along with 
the dashed line represents the comparison interval for the mean of the error of AutoML-FIRE. The grey line represents the model errors that overlap with the comparison interval 
and thus are statistically similar to AutoML-FIRE. The red line represents statistically different model results.
the individual clusters provides insight into the range of variation 
within each cluster. From this, we can conclude that the South & West 
cluster is the least susceptible to uncertainty. However, the model is 
most sensitive to uncertainty in the previous year’s average rainfall 
(PYR) and forest cover fraction among the variables across the clusters. 
Sensitivity to forest cover emphasises the need for enhanced mapping 
accuracy of forested areas. Uncertainties in forest cover fraction can 
introduce variability in fire count predictions, potentially resulting 
in the misallocation of resources by fire management authorities. By 
including uncertainty intervals, decision-makers are better equipped 
to handle system reliability under varying conditions and can incor-
porate these findings into risk management frameworks that account 
for potential variability in predictions, thereby improving the overall 
robustness of wildfire management systems. Overall, this uncertainty 
analysis underscores the stability and robustness of AutoML-FIRE in 
handling variability within the dataset.
14 
6.3. Spatial distribution analysis

To demonstrate that the model’s superior performance was not 
simply due to a favourable train-test split, and to confirm that the 
model is independent of the spatial variability of the training set, 
we conducted a spatial distribution analysis. This is essential because 
models are trained on data from certain regions might perform better 
purely due to the characteristics of that region, which would undermine 
the ability of the model to generalise. To address this, we trained and 
evaluated the model using 30 different seed values, resulting in 30 
distinct random splits of the dataset into training and testing data. 
The evaluation metrics for both the training and testing datasets are 
provided in the supplementary material, with the 𝜇±𝜎 reported in Table 
4. This result can be used to conclude that the model’s performance is 
independent of the spatial distribution of the data, as the deviations 
from the mean are minimal in all cases. This spatial independence is 
crucial as it validates the generalisation capability of the model across 
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Fig. 12. The figure depicts feature sensitivity by applying ±5% and ±10% uncertainty to each feature. It demonstrates how perturbations in feature values influence the model’s 
predictions in %.
Table 4
Spatial distribution analysis.
 Cluster Training Testing

 R RMSE Bias R RMSE Bias  
 North-east 0.98 ± 0.01 2.13 ± 0.30 0.08 ± 0.05 0.74 ± 0.01 5.78 ± 0.20 1.01 ± 0.21 
 Center & East 0.98 ± 0.01 1.42 ± 0.16 0.06 ± 0.09 0.70 ± 0.01 3.97 ± 0.15 0.87 ± 0.23 
 North 0.98 ± 0.01 2.31 ± 0.27 0.05 ± 0.13 0.82 ± 0.03 6.05 ± 0.40 1.39 ± 0.41 
 South & West 0.99 ± 0.00 1.03 ± 0.12 0.04 ± 0.02 0.76 ± 0.05 3.40 ± 0.20 0.75 ± 0.18 
 All grids top 30 0.96 ± 0.05 2.31 ± 0.63 0.05 ± 0.09 0.72 ± 0.02 5.19 ± 0.27 0.80 ± 0.31 
v
n

p
b
l
c
a
c
s
c
f
v

ifferent regions and ensures that its performance is not confined to any 
articular geographical area or specific training dataset. Therefore, our 
odel is robust and reliable when applied to diverse spatial contexts, 
nhancing its applicability in real-world scenarios.

.4. Ablation analysis

We performed an ablation analysis of our model to assess how its 
erformance is impacted by restricting the number of features. AutoML-
IRE was trained and evaluated using nine different combinations of 
eatures that demonstrated high importance across the clusters. The 
valuation metrics R, RMSE, and Bias for each cluster and feature 
ombination are reported in Table  5. As expected, due to the high 
elevance of these features, their combinations are able to predict a 
ignificant portion of the target variable, as evidenced by the strong R 
p
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alues. Remarkably, the model maintains high accuracy even when the 
umber of features is reduced to just three.
A notable finding from the analysis is that AutoML-FIRE consistently 

erforms much better in the North cluster across nearly all feature com-
inations, except when only the population feature is used. The popu-
ation feature exhibits anomalous behaviour in this region and fails to 
apture the trend in the North cluster, as discussed in Section 5.1. This 
nomaly is likely attributed to unique socio-environmental factors spe-
ific to the North cluster. On the other hand, the model’s performance 
ignificantly improves when all features are combined, reinforcing the 
onclusion that a complex interplay of multiple factors drives forest 
ires. This underscores the importance of considering a holistic set of 
ariables when building predictive models for such intricate natural 
henomena.
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Table 5
Ablation analysis of the input features.
 Considered features Metrics North-east Center & East North South & West All grids top 30 
 
Population

R 0.43 0.40 0.39 0.40 0.44  
 RMSE 4.88 3.2 5.33 2.65 4.33  
 Bias 0.08 0.08 −0.25 −0.1 0.03  
 
Population + Humidity

R 0.46 0.43 0.65 0.40 0.43  
 RMSE 4.48 2.78 6.08 3.04 3.24  
 Bias 0.09 0.09 −0.20 0.07 0.02  
 
Soil moisture

R 0.33 0.31 0.63 0.40 0.36  
 RMSE 4.00 3.56 7.48 3.07 4.87  
 Bias 0.09 0.26 0.77 −0.08 0.44  
 
Soil moisture + Elevation

R 0.47 0.41 0.51 0.49 0.44  
 RMSE 4.69 2.61 5.00 2.93 3.39  
 Bias 0.06 0.08 −0.11 −0.11 0.01  
 
Soil moisture + Tasmax

R 0.40 0.39 0.66 0.4 0.32  
 RMSE 4.32 3.05 6.84 3.26 6.39  
 Bias 0.1 0.21 0.26 0.11 0.72  
 
Soil moisture + Tasmax + Humidity

R 0.42 0.39 0.66 0.46 0.46  
 RMSE 4.06 2.93 6.59 3.65 4.48  
 Bias 0.78 0.06 −0.16 0.45 0.2  
 
Soil moisture + Humidity + Population

R 0.47 0.46 0.68 0.53 0.46  
 RMSE 4.72 2.92 6.35 3.06 4.5  
 Bias 0.09 0.09 −0.01 −0.12 0.13  
 
Humidity + Forest cover fraction + Population

R 0.47 0.48 0.63 0.55 0.46  
 RMSE 4.42 3.03 5.98 2.98 3.36  
 Bias 0.07 0.08 −0.27 −0.09 0.02  
 
Elevation + Population + Humidity

R 0.46 0.46 0.66 0.53 0.45  
 RMSE 4.73 3.08 6.42 2.83 3.62  
 Bias 0.07 0.08 −0.23 −0.13 0.02  
 
All features

R 0.74 0.69 0.85 0.77 0.73  
 RMSE 5.47 3.87 6.09 3.40 5.37  
 Bias 1.26 0.99 1.46 0.83 0.01  
 

6.5. Impact analysis of the AutoML-FIRE model

In this section, we examine the potential impact of AutoML-FIRE 
on the field of forest fire prediction. We analyse the environmental, 
social, and economic benefits of our model and its role in aiding 
the decision-making processes of authorities responsible for forest fire 
management.

• Quantifying forest fire: Traditionally, forest fire prediction has 
been approached as a classification problem. In this study, we 
quantified forest fires by predicting the forest fire count us-
ing our model. Quantifying forest fires provided a more pre-
cise assessment of risk, allowing for more targeted precautionary 
measures.

• Pan-India and regional study: To the best of our knowledge, 
this is the first pan-India study of forest fires. This provides a 
comprehensive overview of forest fire occurrences and their de-
pendencies on various factors across India’s diverse geographical 
regions. Additionally, by clustering the data into sub-regions, we 
achieved localised yet improved predictive accuracy.

• Improved accuracy: Through the evaluation of AutoML-FIRE 
and comparison with benchmarking algorithms, we demonstrated 
the superior performance and predictive capabilities of our model.
As a result, our forest fire predictions showed marked improve-
ments, minimising the likelihood of false alarms.

• Robust and stable nature of the model: The various analyses 
conducted established the robustness and stability of AutoML-
FIRE. These results confirmed that the model is reliable for forest 
fire prediction, making it suitable for integration into warning 
systems.

• Broader adaption: With the increase in forest fires worldwide, 
the ‘‘AutoML-FIRE’’ framework offers a scalable and adaptable 
approach to improve regional predictive capabilities. By incorpo-
rating region-specific data, it can enhance the accuracy of fire risk 
assessments across diverse geographic contexts.
16 
• Role in decision-making: AutoML-FIRE has the potential to 
assist authorities in forest fire management by providing accurate 
predictions, which would aid in more effective mitigation and 
response strategies. It could be particularly useful for national 
governments in fairly allocating resources to states that are more 
vulnerable to forest fires. Furthermore, local authorities could use 
these predictions to better prepare for impending fire threats.

• Societal impact: One of the most significant impacts of forest 
fire prediction is the ability to enable local communities to take 
necessary precautions and prepare in advance. By incorporating 
this model into early warning systems, the loss of human life and 
economic damage could be minimised.

6.6. Limitations and future work

AutoML-FIRE represents a significant advancement in the domain 
of forest fire prediction, demonstrating a high degree of accuracy 
and reliability. However, despite its strengths, the model has certain 
limitations that could be addressed in future work.

• Number of variables: Forest fires result from a complex interplay 
of various factors. Although we considered a broad set of input 
variables, there may be additional factors influencing forest fire 
occurrences. In particular, future work could incorporate more 
variables that account for anthropogenic influences, such as land 
use changes, deforestation, and human activity in vulnerable 
regions.

• Reliance on historical data:
One of the key limitations of this study is that the dataset used 
ends in 2018, which may affect the current relevance of the pre-
dictions given recent changes in climate patterns, land use, and 
human activity. Forest fire dynamics are influenced by both short-
term variability and long-term trends, and events post-2018, such 
as increasingly frequent extreme heatwaves or land-use change, 
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are not captured in the training data. As a result, model perfor-
mance in recent years may differ, and retraining with updated 
datasets could be necessary to maintain accuracy. Incorporating 
more recent data, as it becomes available, will be essential for 
improving model robustness and ensuring applicability to current 
fire risk scenarios.

• Lack of real-time processing: The current version of AutoML-
FIRE lacks the ability to process real-time data, which limits 
its use in emergency situations that require timely and dynamic 
predictions. In such scenarios, access to real-time environmen-
tal variables such as temperature, wind speed, and humidity is 
essential for accurate forecasting. Integrating AutoML-FIRE into 
operational workflows and real-time data-sharing platforms could 
enable continuous updates, making the model more responsive 
and suitable for real-world fire monitoring and early warning 
systems.

• Spatial resolution: In this study, fire counts were predicted for 
a grid size of 0.25◦ × 0.25◦. With the availability of higher-
resolution input variables, AutoML-FIRE could be deployed to 
predict forest fires at a finer spatial resolution. This would enable 
a more targeted and region-specific approach to fire management 
and mitigation efforts.

• Nowcasting capabilities: AutoML-FIRE can predict forest fires 
in near real-time when provided with up-to-date data. However, 
a key direction for future research is the development of models 
that can forecast forest fires well in advance. Such advancements 
would improve preparedness and response strategies, potentially 
reducing both human and environmental losses.

• Extreme weather conditions: Our study does not fully account 
for extreme weather conditions, such as sudden wind shifts or 
prolonged droughts, which could significantly alter fire behaviour 
and spread.

• Post-fire effects: While this study focuses on forest fire pre-
diction, it does not analyse the large-scale environmental im-
pacts that occur post-fire. Future research could leverage machine 
learning models to assess post-fire effects, such as changes in 
soil quality and variations in air pollution levels, particularly 
concentrations of particulate matter (𝑃𝑀2.5 and 𝑃𝑀10). Devel-
oping predictive frameworks for these factors would enhance 
our understanding of fire-induced ecological changes and aid in 
post-fire management strategies.

7. Conclusion

Our findings demonstrate that AutoML-FIRE provides an accurate 
and reliable approach for predicting forest fire occurrences across high-
risk regions in India. The model consistently surpasses conventional 
benchmarks in predictive performance, with robust results validated 
through spatial distribution and uncertainty analyses. These results 
underscore the potential of AutoML-FIRE as an effective tool for op-
erational early warning systems, offering critical support to local au-
thorities in mitigating the environmental and socio-economic impacts 
of forest fires. Integrating AutoML-FIRE into existing frameworks could 
significantly enhance preparedness and resilience against escalating fire 
risks.
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