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A B S T R A C T   

We use surface soil moisture content as a proxy to assess the effect of drainage congestion due to structural 
barriers on the alluvial Fan of the Kosi River on the Himalayan Foreland. We used Sentinel-1 satellite images to 
evaluate the spatial distribution of soil moisture in the proximity of structural barriers (i.e., road network). We 
applied modified Dubois and a fully connected feed-forward artificial neural network (FC-FF-ANN) models to 
estimate soil moisture. We observed that the FC-FF-ANN predicts soil moisture more accurately (R = 0.85, RMSE 
= 0.05 m3/m3, and bias = 0) as compared to the modified Dubois model. Therefore, we have used the soil 
moisture from the FC-FF-ANN model for further analysis. 

We identified the road network that traverses on the Kosi Fan horizontally, vertically, and with inclination. We 
create a buffer of 1 km along either side of the road. Within this, we assessed the spatial distribution of soil 
moisture. We observed a high concentration of soil moisture near the structural barrier, and decreases gradually 
as we move farther in either direction across the orientation of the road. The impact of structural barriers on the 
spatial distribution of soil moisture is prominent in a range between 300 to 750 m within the road buffer. This 
study is a step towards assessing the effect of structural interventions on drainage congestion and flood 
inundation.   

1. Introduction 

Engineering interventions (i.e., rail-road network, embankments) on 
alluvial plain can act as barriers. They obstruct drainage networks that 
can sometimes lead to localised impoundment during the rainfall. If such 
a situation persists for a longer duration, it can lead to a permanent 
waterlogging in the regions. A condition that degrades the land and 
eventually affects the plant growth due to poor soil aeration, decrease in 
the soil pH, and nitrogen deficiency by the biological breakdown of the 
nitrate in the soil (Steffens et al., 2005; Ciancio et al., 2021). 

Several studies have been conducted to identify waterlogged patches 
from remote sensing images (Pandey et al., 2012; Kaushik et al., 2019; 
den Besten et al., 2021; Jalayer et al., 2014; Singh and Sinha, 2022). A 
prior knowledge of the severity of drainage congestions can help to 
mitigate their impact. To perceive this, researchers have used the site 
inherent information (i.e., soil hydraulics and topography) to assess 
drainage congestion (Hatton et al., 2002). For example, regions with 
sandy clay and silty loam soils are prone to drainage congestion due to 
their low infiltration capacity (McFarlane, 1985). Further, the regions 

with shallow groundwater levels are more prone to waterlogging 
(Chandio et al., 2012; Sinha et al., 2018). Alluvial Fan of the Kosi River 
in the Himalayan Foreland is well known for frequent flooding, severe 
waterlogging, and drainage congestion (Sinha et al., 2008; Sinha, 2014; 
Mishra and Sinha, 2020). Drainage congestion has not only affected 
agriculture productivity, but it has posed freshwater supply, shelter, 
sanitation, and other socioeconomic challenges. According to Sinha 
(2009), construction of embankments to control floods and other 
infrastructural development such as the road-rail network has resulted 
in severe drainage congestion on the Kosi Fan. Further, they have 
significantly altered the structural and functional connectivity of the 
channels (Sinha et al., 2013; Kumar et al., 2014). As a consequence, in 
recent years, the duration and area of flood inundation have increased 
on the Kosi Fan (Sinha et al., 2008). It is therefore utmost important to 
monitor drainage congestion due to the structural barriers. 

The surface soil moisture content depends on the soil hydraulics and 
topography (Seibert et al., 2007; Florinsky, 2016; Yuan et al., 2021). It 
can be used as a proxy to assess the impact of drainage congestion. 
Generally, infiltration is less if the soil is saturated (high moisture); this 
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eventually results in the storage of water on the surface for a longer 
duration. Such a condition can lead to a flood-like situation during the 
rainy season. Satellite remote sensing (microwave, optical) images have 
been used effectively to estimate surface soil moisture at regional and 
global scales by using various backscatter and data-driven machine 
learning models (Crow et al., 2017; Abowarda et al., 2021). 

To the best of our knowledge, none of the existing literature utilised 
the soil moisture information to develop methodologies for assessing 
drainage congestion due to structural barriers. We propose a novel 
approach to identify the impact of drainage congestion along the road 
network. We use surface soil moisture as a proxy to measure the extent 
of drainage congestion in the proximity of structural barriers. We apply 
machine learning model to predict surface soil moisture from satellite 
(microwave and optical) images and in-situ measurements. 

2. Study area 

We carried this study on the Kosi alluvial Fan (Fig. 1). It is one of the 
largest alluvial Fan (≈ 150 km length and ≈ 115 km width) on the Hi
malayan Foreland (Wells and Dorr, 1987; Sinha, 2009; Sinha, 2014; 
Gaurav et al., 2015; Gaurav et al., 2017). 

The Kosi Fan is composed of homogeneous quartz grains with a 
median size ranging from 300 μm (medium sand) to 100 μm (fine sand) 
in the proximal and distal part, respectively (Gaurav et al., 2015). The 
major portion of the Fan is agricultural land (84%), with sandy, sandy 
loam, loam, and silty loam as the dominant soil type. The remaining 
portions are wetlands/water bodies (9%) and built-up (7%) (NRSC, 
2017). The Kosi Fan lies in the tropical humid climate zone, and it 
annually receives 1,484 mm of rainfall. The minimum (winter) and 

Fig. 1. Landuse/Landcover map of the study area (Source: NRSC). The conical boundary (in solid black) illustrates the extent of the Kosi Fan. Engineering structures 
such as, embankments (lines in dotted red), road (lines in solid dark red-brown), and canal (line in solid blue) are overlaid on the study area. Field photographs (a-c) 
on the left panel show the waterlogging in the proximity of road network. 

Table 1 
Description of the satellite data used in this study.  

Sentinel-1A/B 

Date (mm-dd-yyyy) Polarisation (Dual) Angle of Incidence (o) Cell size (m × m) Pass 

12/11/2019 (VV, and VH) 38.6 10 × 10 Descending 
12/15/2019 -do- 38.5 -do- Ascending 
12/17/2019 -do- 38.4 -do- Descending 
12/18/2019 -do- 38.5 -do- -do- 
12/20/2019 -do- 38.5 -do- Ascending 

Sentinel-2A/B 
Date (mm-dd-yyyy) Orbit number and direction Bands Wavelength (nm) Spatial Resolution 

12/09/2019 76, Descending 4, 8 646–685, 774–907 10 m 
Shuttle Radar Topography Mission (SRTM) 

Date (mm-dd-yyyy) Grid spacing Parameter Co-ordinates Spatial Resolution 
09/23/2014 1 arc-second Elevation (25

◦

–26
◦

N, 86
◦

–87
◦

E) 30 m  
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Fig. 2. (a) Landuse/landcover map of the Kosi Fan (Source: NRSC). Points in different colours represent the measurement made on different dates. Figures on the 
right panel, (b) illustrates the universal random grid sampling strategy adopted for the measurement of soil attributes (i.e., moisture and surface roughness), (c) field 
photographs to show the different instruments used for the measurement of soil moisture (TDR), surface roughness (pin-profilometer), and location (GPS). 

Fig. 3. (a) Road network (in black) with 1 km buffer (in shaded gray) on the Kosi megafan, (b) schematic illustrates the orientation (vertical, inclined, and hori
zontal) of road network, and (c) zoomed area (Fig. 3a box in red) illustrates the angle measurement along the road network. 
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maximum (summer) average temperature range from 18◦C to 32◦C, 
respectively. The groundwater level is shallow and ranges from ≈ 1 to ≈
8 m below ground level (bgl) throughout the year (http://cgwb.gov. 
in/). 

In the past few decades, constructions of road-rail networks on the 
Kosi Fan has increased significantly (Kumar et al., 2014). In particular, 
this region observed a significant development of road-rail networks 
after the year 2010. On the Kosi Fan, majority of the roads traverse in the 
East - West direction, and most of the streams flows from North to South. 

As a consequence, they act as physical barriers to the streams, and there 
is a high chance of waterlogging in the proximity of these barriers. We 
have highlighted three such examples in Fig. 1 (a-c). We can observe the 
waterlogging along both sides of the road. To identify and monitor the 
potential regions for waterlogging in the study area, soil moisture can be 
used as a precursor. 

Fig. 4. Flow chart of the methodology. This study contains two parts, the first part (in red box) illustrates the detailed procedure opted to model soil moisture from 
Sentinel-1 images. Second part (in green box) shows the methodology used for the analysis of drainage congestion in the proximity of road network. 

Fig. 5. (a) Satellite derived soil moisture (MDM) plotted as a function of in-situ data. Shaded region in gray represents the 95% confidence interval. Horizontal error 
bar is the standard deviation in the in-situ measurements, the vertical error bar is the model response to the input uncertainties, (b) represents time-series of observed 
and MDM-derived soil moisture with the 95% confidence level, and (c) represents the corresponding residual plot which is calculated by subtracting fitted values 
from the in-situ. The dashed lines represent the ±RMSE. 
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3. Materials and methods 

3.1. Satellite data and processing 

We estimate surface soil moisture of the Kosi Fan by using Sentinel-1, 
Sentinel-2 satellite images, and the digital elevation model from the 
Shuttle Radar Topography Mission (SRTM) (Table 1). We have down
loaded the Sentinel-1 and 2 images from the official website (https://sc 
ihub.copernicus.eu/) of the European Space Agency (ESA). The ESA had 
launched two polar-orbiting satellites, Sentinel-1A (March 2014) and 
Sentinel-1B (March 2016), under the Copernicus joint initiative of ESA 
and European Commission (EC). Both these satellite missions share the 
same orbital plane and carry C-band (5.405 GHz) Synthetic Aperture 
Radar (SAR). 

Sentinel-1A and 1B satellites together acquire images at a temporal 
resolution of 6-days (12-days individually) into four different modes; 
wave, extra-wide swath, interferometric wide swath, and stripmap 
(Singh et al., 2020; DeVries et al., 2020). The images are available in 
three different levels; level-0, level-1, and level-2. Level-0 is an unfo
cused SAR product, level-1 is the Ground Range Detected (GRD) and 
Single Look Complex (SLC), and level-2 is the ocean geophysical prod
uct. Single polarisation (i.e., either σVV or σHH) is available in the wave 
mode whereas dual polarisation (i.e., σVV+VH or σHH+HV) is available in 
all other modes. Commonly, σHH or σHH+HV polarisation is available for 
polar environment and sea-ice zones. The σVV or σVV+VH is accessible for 
all other regions at a cell size of 10 m × 10 m with 250 km swath. We 
used σVV+VH dual polarised GRD product (i.e., level-1 product). We 
performed radiometric correction, multi-looking (with a multi-looking 
factor of six), speckle filtering through refined Lee filter, and Range- 
Doppler terrain correction by using Sentinel Application Platform 
(SNAP v8.0). After the processing, we get the backscatter image at 60 m 
× 60 m grid size. 

Sentinel-2A (launched in June 2015) and Sentinel-2B (launched in 
March 2017) are two polar-orbiting satellites. The data comes with two 
levels (1C and 2A) of processing. Level-1C product is top-of-atmosphere, 
and level-2A is bottom-of-atmosphere corrected (Martins et al., 2017). 
Sentinel 2A and 2B together acquire images in thirteen different spectral 
bands (from VNIR to SWIR) at 5 days (10 days individually) revisit time 
(Li and Roy, 2017). The spatial resolution of these spectral bands varies 
from 10–60 m. We have selected band 4 (∼ 665 nm) and band 8 (∼ 842 
nm) to compute Normalised Difference Vegetation Index (NDVI). The 

resulting pixel size of the NDVI image is 10 m × 10 m that we have 
resampled at 60 m × 60 m by using the nearest neighbour algorithm. 

We downloaded the SRTM digital elevation model of the study area 
from the US Geological Survey (https://earthexplorer.usgs.gov). This 
mission was a joint venture of Agenzia Spaziale Italiana (ASI), NASA, 
(DoD/NGA) DLR, and National Geospatial-Intelligence Agency that 
consist of two radars; C-band (by NASA at λ=5.6 cm) and X-band (by 
DLR/ASI at λ=3.1 cm). Three versions of SRTM elevation data are 
available publicly; SRTM 1 arc-second global, non-void filled, and void 
filled (Nasa, 2013). We have used void filled DEM elevation data 1 × 1 
arc sec (i.e., 30 m × 30 m) that was resampled at 60 m × 60 m. 

3.2. Measurement 

To evaluate the accuracy and reliability of satellite derived soil 
moisture, we conducted a field campaign during 11th to 20th December 
2019 on the Kosi Fan. We have measured surface soil moisture at 78 
different locations using a Time Domain Reflectometry (TDR) probe at 
the time when Sentinel-1 satellite passes over the study area (Fig. 2). 
Before measuring the soil moisture, we need to calibrate the TDR. This 
we have done by following the procedures explained in Singh et al. 
(2020). The penetration depth of Sentinel-1 SAR pulses ranges between 
1–5 cm depending upon the target and sensor properties. To ensure that 
the backscattered SAR pulses sense the same moisture content, we 
measured the soil moisture at a depth below 5 cm from the ground 
surface (Singh et al., 2018; Singh et al., 2019). We split the study area 
into small grids (4 km × 4 km) and then randomly selected a grid using 
the universal random grid sampling approach. To minimise the impact 
of spatial heterogeneity at the selected grid, we arbitrarily selected the 
nearly uniform locations. We then randomly measure soil moisture 
within a grid at seven to ten different locations by inserting the TDR 
probe in the top 5 cm of the soil surface. We record the coordinate of 
each measurement location using a handheld GPS. All our measure
ments are inside the footprint of the sentinel-1 image pixels (i.e., 60 m), 
with each observation separated by no less than 20 m apart from the 
others. To enable a direct point-to-pixel comparison of the in-situ and 
model-derived soil moisture, we compute the average of these mea
surements and select the mean value as a single representative of the in- 
situ measurement (Ryan et al., 2017; Thakur et al., 2018). We used 
standard deviation to report the uncertainties in our measurements. We 
have also measured the surface soil roughness in the field by using pin- 

Fig. 6. (a) Satellite derived soil moisture (FC-FF-ANN) plotted as a function of in-situ data. Shaded region in gray represents the 95% confidence interval. Horizontal 
error bar is the standard deviation in the in-situ measurements, the vertical error bar is the model response to the input uncertainties, (b) represents the time series of 
observed and FC-FF-ANN-derived soil moisture, and (c) represents the corresponding residual plot which is calculated by subtracting fitted values from the in-situ. 
The dashed lines represent the ±RMSE. 
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profilometer (Singh et al., 2021b). 

3.3. Soil moisture modeling 

This section discusses the soil moisture modeling and drainage 
congestion due to road network. We have written scripts in MATLABTM 

for all analysis. The following subsections discuss the detailed proced
ures to estimate soil moisture using MDM and FC-FF-ANN models. 

3.3.1. Modified Dubois model (MDM) 
Dubois et al. (1995) proposed an empirical model to estimate soil 

moisture using quad polarised SAR backscattered images based on X-, C- 
, and L-band scatterometer and airborne images. They proposed two 
equations for σHH and σVV (Eqs. 1 and 2) in terms of target parameters (∊ 
and s) and sensor parameters (θ and λ). Both the equations are inverted 
simultaneously to calculate the target parameters. 

σHH = 10− 2.75
(

cos1.5θ
sin5θ

)

100.028∊tanθ(k⋅s⋅sinθ)1.4λ0.7 (1) 

Fig. 7. Spatial distribution of the soil moisture (derived from (a) MDM and (b) FC-FF-ANN) on the Kosi Fan. (c) image in the bottom illustrates the difference in soil 
moisture obtained after subtracting the MDM derived soil moisture from FC-FF-ANN. Transparent pixels are the masked regions. 
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σVV = 10− 2.35
(

cos3θ
sin3θ

)

100.046∊tanθ(k⋅s⋅sinθ)1.1λ0.7 (2)  

where θ is the incidence angle, k is the wavenumber (2⋅π
λ ), λ is the 

wavelength of the SAR pulses, ∊ is the relative soil permittivity, and s is 
the soil roughness (root mean square height). This model is widely used 
and can be successfully applied on a sparsely vegetated or barren land 
where the value of NDVI is less than 0.4 (or region with values σHV

σVV 
< − 11 

dB) (Dubois et al., 1995). It provides reliable estimates if the soil 
moisture is within a range between 0–0.35 m3/m3. Wherever quad 
polarised SAR images are not available, a modified version of the Dubois 

model is used (Sahebi and Angles, 2010; Rao et al., 2013; Dave et al., 
2019; Singh et al., 2020; Thanabalan et al., 2021). Sahebi and Angles 
(2010) have eliminated the surface roughness through field measure
ments and reduced the computation to one equation (either σHH or σVV 

depending on the availability and satellite mission) with one unknown 
(i.e., ∊). 

We applied the MDM to estimate the soil permittivity (∊) by elimi
nating the surface roughness through the PCA-MM-SVR model (Singh 
et al., 2021b). We inverted σVV (Eq. 2) to compute relative soil 
permittivity and fed it to universal Topp’s model to estimate the volu
metric surface soil moisture (mv) (Topp et al., 1980). 

Fig. 8. (a) Left panel shows the location of vertical transects on the road soil moisture map with 1 km buffer on either side and (b) right panel shows the soil moisture 
profile for the corresponding transects. The road is shown in red, and the mean of all the 20 transects is plotted in thick gray. 

Fig. 9. (a) Left panel shows the location of horizontal transects on the road soil moisture map with 1 km buffer on either side, and (b) right panel shows the soil 
moisture profile for the corresponding transects. The road is shown in red, and the mean of all the 20 transects is plotted in thick gray. 
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3.3.2. Feed-forward ANN and data fusion 
Machine learning models are widely used to predict soil moisture 

from satellite images. We trained and applied FC-FF-ANN to obtain the 
surface soil moisture using the in-situ soil moisture measurements. 
Initially, we have extracted seven features namely, σHH, σVV, θ, NDVI 
from Sentinel-1 and Sentinel-2 satellite images respectively, elevation 
from SRTM-DEM and the coordinate (longitude, and latitude) of each 
pixel. We generated two extra features (i.e., σVH/VV and σVH− VV) via the 
linear data fusion of σHH and σVV (Singh et al., 2021a). We standardise 
all the nine features (F) using standard z-score scaling (Eq. 3). 

Fs =
F − F
std(F)

(3)  

where Fs is the standardise, F is the mean value (F), and std(F) is the 
standard deviation of the feature sets. We have randomly divided the 
feature sets and the corresponding in-situ measurements using the 
Mersenne Twister generator. We use 40% of the dataset to train a 
9:10:10:10:1 (nine inputs, three hidden layers with ten neurons each, 
and one output) FC-FF-ANN model using Levenberg–Marquardt (LM) 
training algorithm. We used the remaining datasets to validate (10%) 
and test (50%) the trained model. 

3.3.3. Masking built-up regions 
We have downloaded the built-up data of the Kosi Fan from Joint 

Research Centre (JRC) open data portal (https://ghsl.jrc.ec.europa. 
eu/download.php). This data is a part of the Global Human Settlement 
Layer (GHSL) that has been derived from Landsat satellite images. The 
GHS grid contains built-up from 1975 to 2014 in four epoch (i.e., 
1975–1990-2000–2014) at different spatial resolution 30 m, 250 m, and 
1 km. For this study, we have used the latest available built-up data of 
2014 at 250 m spatial resolution. This data product is available in World 
Mollweide coordinate system. To be consistent with our other data, we 
have transformed its coordinate to UTM WGS84 and resampled at 60 m 
grid resolution. Finally, we use this grid to mask the built-up pixels from 
the soil moisture raster. 

3.4. Soil moisture in the proximity of road network 

We use soil moisture map to study the drainage congestion in the 

proximity of road network on the Kosi Fan surface. We extract the road 
network from the Google Earth images. We padded a buffer of 1 km on 
both sides of the road (Fig. 3a). Within this, we extract the soil moisture 
along a transect drown across the road network. To check and cover all 
the possible directional dependency of the road network, we categorised 
the transects into three major categories; vertical, horizontal, and 
inclined. 

We defined the vertical profiles (i.e., α = 0◦ ) as a set of transects that 
travels from up to down (or down to up) parallel to the y-axis (Fig. 3b). 
An example of a vertical profile is shown in Fig. 3c in blue. We randomly 
extracted 20 such profiles (i.e., V1,V2,…, V20) at different locations in 
the study area. Each profile is an average of 15 to 50 transects. We 
defined the horizontal profiles as a set of transects from left to right (or 
right to left) perpendicular to the y-axis (Fig. 3b). In terms of angle, it 
can be either α = 90◦ or α = − 90◦ . Fig. 3c (box in red) show a horizontal 
transect. We have randomly extracted 20 such profiles (i.e., H1,H2,…, 
H20) in the study area. Finally, to consider the orientation of a road 
network other than vertical and horizontal, we have defined inclined 
profiles. The angles are measured with reference to the y-axis (Fig. 3b). 
The angles are positive (i.e., α+) in the clockwise and negative (i.e., α− ) 
in the anti-clockwise direction. Fig. 3c (box in green) illustrates the 
positive angle (i.e., in a clockwise direction). We have randomly 
extracted 20 such profiles (i.e., I1, I2,…, I20) at different locations 
throughout the study area. Fig. 4 illustrates a detailed methodology 
adopted for this study. 

4. Results 

4.1. Modified Dubois model 

We plot the soil moisture obtained from MDM against the in-situ 
observations (Fig. 5a). We noticed MDM is able to capture the trend of 
spatial variation of soil moisture, however the modelled values are 
underestimated (with R = 0.43, bias = − 0.10, and RMSE = 0.08 m3/m3). 
Despite a significant scattering, most of the observation lies within the 
95% confidence level. We now plot the time-series of modelled and in- 
situ soil moisture with the corresponding residuals (Figs. 5b & c). The 
residuals appears to be stochastic in nature and do not follow any spe
cific pattern. We observed positive residuals in the majority of instances, 

Fig. 10. (a) Left panel shows the location of inclined transects on the road soil moisture map with 1 km buffer on either side, and (b) right panel shows the soil 
moisture profile for the corresponding transects. The road is shown in red, and the mean of all the 20 transects is plotted in thick gray. 
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that eventually resulted in a negative bias. Based on these analysis, it is 
evident that the performance of MDM is reasonably poor on the Kosi 
Fan. 

4.2. Feed-forward ANN and data fusion 

We now compare the soil moisture predicted from FC-FF-ANN to the 
in-situ measurement (Fig. 6a). The predicted value accord well with the 
in-situ measurement (R = 0.85, RMSE = 0.05 m3/m3, and bias = 0). All 

the data points are centered along the regression line. Uncertainties of 
the trained model in response to the input uncertainties are mild. The 
time-series plot of the predicted soil moisture matches with the in-situ 
measurements in terms of magnitude and trend (Fig. 6b). The re
siduals lie within the ± RMSE with no specific pattern. This indicates a 
good fit (Fig. 6c). Fig. 7 shows the spatial distribution of soil moisture on 
the Kosi Fan estimated from MDM and FC-FF-ANN. Despite different 
magnitude, the trend of spatial soil moisture variations appears nearly 
similar. Table A.1 (Appendix A) reports the comparison of in-situ and 

Fig. 11. (a) Spatial distribution of average annual rainfall on the Kosi Fan generated using IDW interpolation method for rainfall data from 1980 to 2018 downloaded 
from India Meteorological Department (IMD) official website (https://mausam.imd.gov.in). (b) spatial distribution of groundwater level (in m b.g.l) using IDW 
interpolation technique. (c) Variation of the impact region from proximal to the distal part of the Kosi Fan. Vertical line (in red) represents the position of road. 
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satellite derived soil moisture. It is important to note that the soil 
moisture derived from MDM is reliable within 0.35 m3/m3. It does not 
provide a reliable estimate in the regions where soil moisture contents 
are relatively high. This is perhaps a reason, MDM is mostly used to 
estimate soil moisture in the semi-arid/arid regions (Singh et al., 2020). 
On the Kosi Fan, the surface soil moisture is relatively high due to the 
presence of numerous active channels and shallow groundwater levels. 
From here onward, we used the soil moisture estimated from the FC-FF- 
ANN model. 

4.3. Drainage congestion due to road network 

We extract soil moisture within one km buffer of the road network. 
We identify the orientation (horizontal, vertical, and inclined) of road 
network on the Kosi Fan (Fig. 8–10). The rectangular boxes show the 
location where we extracted the moisture. We plot the soil moisture 
profile for each vertical transect (Fig. 8a). Interestingly, soil moisture is 
maximum in the proximity of roads and reduces in the transverse di
rection as we move farther (Fig. 8b). At some transects we observes the 
high moisture content at the location farther from the road. This is due 
to the presence of streams and waterlogging patches that result in high 
soil moisture. To minimise the impact of these occasional peaks, we have 
plotted the mean (in black) of all the transects (Fig. 8b). This clearly 
shows that the road network acts as a barrier due to which soil moisture 
accumulates along the road resulting into drainage congestion. The re
gion marked in gray shades on either side of the road represents the 
length up to which effect of the drainage congestion can be clearly 
observed. Visual observation reveals that the spatial distribution of soil 
moisture is prominent within the proximity (about 550 m) of the road 
network, if oriented vertically. 

Similarly, we extract soil moisture across the roads oriented hori
zontally on the Kosi Fan (Fig. 9a). We observed soil moisture content is 
maximum at the proximity of the road and reduces towards the upward 
and downward directions from the road. To have a clear trend, we 
plotted the mean (line in black) of all the transects (Fig. 9b). Visual 
observation reveals that the spatial distribution of soil moisture is 
prominent within the proximity (about 600 m) of the road network. 
Finally, we extract the soil moisture across the roads oriented with some 
inclination (Fig. 10a). We observed a similar trend as observed for 
vertical and horizontal profiles. The spatial distribution of soil moisture 
is prominent within the proximity (about 750 m) of the road network 

having different orientation angles. 

5. Discussion 

MDM underestimates the surface soil moisture content on the Kosi 
Fan. This is probably due to the fact that it produces reliable soil 
moisture (volumetric) estimates within a range between 0–0.35 m3/m3. 
Such conditions often prevail in the arid and semi-arid climatic regions. 
This is why MDM has been widely used to study soil moisture from 
microwave satellite images in arid/sub-arid regions (Sahebi and Angles, 
2010; Rao et al., 2013; Mirsoleimani et al., 2019; Singh et al., 2020). For 
instance, a very first attempt to estimate surface soil moisture from dual 
polarised Sentinel-1 SAR image using MDM was executed in the arid 
region by Sahebi and Angles (2010). They applied MDM on the Cha
teauguay watershed, Canada. They reported that MDM outperforms the 
Oh model and Geometrical Optics Model (GOM). Rao et al. (2013) 
estimated the soil moisture in a semi-arid regions of Vidarbha in 
Maharashtra. They reported a maximum correlation coefficient of 0.9 
with an error of 2.9 %. Recently, a study conducted in the semi-arid 
region of Karaj (Iran), the authors have used dual polarised Sentinel-1 
images to estimate surface soil moisture using MDM (Mirsoleimani 
et al., 2019). They reported that MDM successfully estimates the surface 
soil moisture with R = 0.77 and RMSE = 1.45 dB. More recently, Singh 
et al. (2020) applied the MDM using Sentinel-1 images to calculate the 
surface soil moisture in a semi-arid region of Central India. They re
ported that MDM accurately estimate the surface soil moisture over a 
semi-arid region with R = 0.87, RMSE = 0.035 m3/m3, and bias = 0.02 
m3/m3. We noticed that the MDM fails to estimate surface soil moisture 
in the humid climatic regions (i.e., Kosi Fan). The ground measurement 
suggests a large variability in the surface soil moisture. During our field 
campaign, we observed the soil moisture varies in a range between 
0.10–0.50 m3/m3, much higher values than the validity range of MDM. 

Further, to understand the variation of the drainage congestion with 
topography, we categorised the Kosi Fan into three regions based on 
elevation variation; proximal (110–71 m), medial (70–51 m), and distal 
(50–30 m). We then combined all the 60 transects (i.e., vertical, hori
zontal, and inclined) and reclassified them based on regions (i.e., prox
imal, medial, and distal). We plotted transects of the respective regions 
and estimated the impact region (Fig. 11c). We noticed in the proximal 
part, the total impact region is approximately 700 m. For the medial and 
distal portions, we observed nearly the same impact region of 900 m. 

Fig. 12. Field photographs (a-f) show the ground condition of drainage congestion and waterlogging at the proximity of road network.  
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Interestingly, we found that the drainage congestion intensity (in terms 
of soil moisture) is highest in the proximal part, followed by the medial 
and distal part, respectively. The highest intensity in the proximal region 
is in accordance with the shallow groundwater level. Next, as compared 
to the distal region, the groundwater level is relatively deeper in the 
medial part. This is in accordance with the drainage congestion, which 
ranked second in terms of intensity. Lastly, we observed a similar trend 
in the distal region, which ranked last in terms of drainage congestion. 
However, considering the elevation solely may result in biased obser
vations. For a fair linkage, we created the spatial maps of the annual 
rainfall and groundwater level (Figs. 11a & b). We found that the 
average annual rainfall in the proximal part of the Fan ranges between 
1450 to 1700 mm; in the medial region, it varies between 1300 to 1750 
mm, and in the distal part, it ranges between 1250 to 1700 mm. In 
comparison, the groundwater level in the proximal portion ranges be
tween 0.5 to 1.5 m; in the medial and distal part, it ranges between 1 to 
4.5 m. 

As discussed, regions of drainage congestion due to structural bar
riers (i.e., road, embankment) may convert into permanent water
logging, if sustained for a longer period. We can observe a severe 
waterlogged condition along both sides of the road (Fig. 12). Such a 
situation may trigger permanent damage, deformation, or collapse of the 
road network. Most importantly, the majority of the roads on the Kosi 
Fan passes through the agricultural lands, which directly affects the farm 
yield. The accumulation of water can result in poor soil aeration, that 
can eventually degrade the overall productivity of the soil (Prajapati 
et al., 2021). These conditions can be minimised by maintaining the 
natural drainage by providing proper passages for water to move 
downstream at the time of planning and execution of road construction 
(Khalil et al., 2021). This will avoid accumulation of water due to 
drainage blockage. 

6. Conclusion 

This study uses soil moisture as a proxy to assess drainage congestion 
in the proximity of road network on the alluvial fan of the Kosi river in 
the Himalayan Foreland. We used remote sensing (microwave and op
tical) images and ground measurements to estimate surface soil moisture 
by using a semi-empirical (MDM) and data driven machine learning (FC- 
FF-ANN) models. Based on this study following conclusions can be 
drawn;  

• On the Kosi Fan, FC-FF-ANN model predicts the soil moisture more 
accurately than MDM.  

• Road network acts as a physical barrier and leads to drainage 
congestion at several places. This eventually results in high soil 
moisture in the proximity of the road network.  

• The extent of drainage congestion is different for the road network 
oriented in vertical, horizontal, and inclined direction. The extent of 
drainage congestion is relatively more at the locations where roads 
traverse in inclined direction.  

• The impact of drainage congestion along the road network is more 
prominent in the medial, and distal parts than the proximal region of 
the Kosi Fan.  

• Soil moisture information can be used as a precursor to measure the 
drainage congestion along the road network. 

This comprehensive framework is a first step to monitor the drainage 
congestion along the road network from remote sensing images. Publicly 
available satellite images (i.e., Landsat, Sentinel-2, Sentinel-1) provide 
images of the earth’s surface at high spatial and temporal resolution. 
They can be used to monitor the drainage congestion and soil moisture 
variability in near real time. Such measurements would help policy
makers to make much informed decisions in the planning and execution 
of development works in the flood prone regions. 

The outcome of this study will help to prevent or mitigate the losses 

due to the severe drainage congestion in terms of agricultural yield, 
public health, soil health, and flood hazards on the alluvial fans. 
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Appendix A. Soil moisture measurements 

This appendix consist of Table A.1. 

Table A.1 
Comparison of in-situ soil moisture with satellite derived soil moisture.  

Site ID Longitude Latitude In-situ Satellite     

MDM FC-FF-ANN 

1 86.63923 26.13257 0.375 0.116 0.387 
2 86.64361 26.10979 0.330 0.207 0.321 
3 86.62364 26.09691 0.350 0.203 0.400 
4 86.62604 26.0954 0.327 0.175 0.339 
5 86.62061 26.0632 0.358 0.102 0.347 
6 86.566 26.0243 0.285 0.112 0.342 
7 86.57533 25.97547 0.349 0.083 0.347 
8 86.64431 25.99772 0.118 0.052 0.103 
9 86.64072 26.03379 0.143 0.045 0.186 
10 86.62675 26.15357 0.463 0.309 0.436 
11 86.66584 26.19629 0.470 0.227 0.350 
12 86.6998 26.21087 0.448 0.155 0.298 
13 86.73994 26.22444 0.380 0.209 0.407 
14 86.75186 26.23693 0.184 0.059 0.155 
15 86.78488 26.24503 0.295 0.192 0.313 
16 86.79723 26.26185 0.423 0.249 0.334 
17 86.80273 26.2389 0.280 0.197 0.281 

(continued on next page) 
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Table A.1 (continued ) 

Site ID Longitude Latitude In-situ Satellite     

MDM FC-FF-ANN 

18 86.79795 26.20753 0.428 0.309 0.378 
19 86.79031 26.18241 0.310 0.081 0.244 
20 86.76803 26.1514 0.178 0.011 0.221 
21 86.65507 26.11443 0.388 0.213 0.380 
22 86.70612 26.06255 0.155 0.118 0.213 
23 86.73248 26.04625 0.238 0.039 0.259 
24 86.71229 26.03606 0.198 0.046 0.254 
25 86.75741 26.02952 0.430 0.127 0.365 
26 86.75144 25.91161 0.275 0.079 0.261 
27 86.66203 25.86703 0.198 0.075 0.207 
28 86.68053 25.82926 0.218 0.268 0.210 
29 86.68639 25.78836 0.380 0.318 0.308 
30 86.6876 25.74611 0.408 0.385 0.361 
31 86.71125 25.6878 0.455 0.348 0.445 
32 86.69384 25.70237 0.330 0.340 0.311 
33 86.65567 25.72331 0.375 0.175 0.302 
34 86.6099 25.72783 0.445 0.241 0.438 
35 86.57812 25.7314 0.315 0.275 0.322 
36 86.54615 25.77154 0.353 0.361 0.367 
37 86.52457 25.80515 0.330 0.186 0.341 
38 86.53774 25.85775 0.413 0.294 0.406 
39 86.56369 25.8713 0.235 0.084 0.247 
40 86.80625 25.91648 0.208 0.254 0.244 
41 86.93388 25.89581 0.295 0.268 0.332 
42 87.00225 25.90533 0.395 0.243 0.338 
43 87.06107 25.90827 0.203 0.220 0.265 
44 87.09836 25.92137 0.310 0.225 0.292 
45 87.21534 25.88781 0.295 0.314 0.284 
46 87.46254 25.72741 0.263 0.220 0.246 
47 87.42014 25.6838 0.223 0.196 0.242 
48 87.39914 25.64069 0.330 0.348 0.372 
49 87.39871 25.60628 0.290 0.243 0.265 
50 87.42513 25.61369 0.188 0.270 0.254 
51 87.475 25.60035 0.308 0.272 0.300 
52 87.48171 25.59672 0.353 0.315 0.312 
53 87.55177 25.60905 0.278 0.305 0.294 
54 87.54285 25.62759 0.250 0.244 0.269 
55 87.53111 25.65317 0.230 0.252 0.228 
56 87.52139 25.67509 0.198 0.132 0.225 
57 87.51138 25.70004 0.305 0.245 0.247 
58 87.51614 25.81319 0.278 0.165 0.236 
59 87.52789 25.82046 0.362 0.184 0.288 
60 87.54014 25.91021 0.214 0.283 0.270 
61 87.51805 25.99278 0.242 0.143 0.267 
62 87.50936 26.00962 0.188 0.054 0.198 
63 87.46062 26.12101 0.345 0.210 0.301 
64 87.29737 26.22082 0.374 0.193 0.322 
65 87.27813 26.24172 0.233 0.171 0.218 
66 87.23487 26.27511 0.248 0.282 0.237 
67 87.2269 26.24339 0.185 0.158 0.242 
68 87.2321 26.20331 0.365 0.192 0.341 
69 87.23437 26.17834 0.255 0.124 0.278 
70 87.23401 26.13083 0.260 0.244 0.281 
71 87.25929 26.01328 0.333 0.158 0.308 
72 87.30746 25.93218 0.255 0.208 0.261 
73 87.20622 26.326 0.319 0.274 0.310 
74 87.034 26.29657 0.314 0.149 0.267 
75 87.00787 26.17258 0.292 0.122 0.280 
76 86.99307 26.05495 0.132 0.178 0.186 
77 86.97813 25.77722 0.300 0.318 0.371 
78 86.96597 25.71033 0.240 0.283 0.362  
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