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A B S T R A C T

Network coverage is a pivotal performance metric of wireless multihop networks (WMNs) determining the
quality of service rendered by the network. Earlier, a few studies have analysed the network coverage by
incorporating shadowing effects (SEs) and ignoring the influence of boundary effects (BEs). Besides, there is
a void in the literature considering BEs plus SEs together. These approaches not only provide overestimation
in network coverage, but also requires intensive simulation for their validation before the actual network
installation; thus, increasing the computational time significantly. Furthermore, simulation time shoots up
with an increase in network parameters like the number of sensor nodes (SNs) and their sensing range. In
this study, we tackle this high simulation time problem by proposing a generalised regression neural network
(GRNN) based machine learning (ML) approach to predict the 𝑘-coverage performance of a WMN placed in a
rectangular-shaped region (RSR). To train the GRNN algorithm for two different set-ups, i.e., without and with
BEs, we extract six potential features, namely length of RSR, breadth of RSR, sensing range of SNs, number
of SNs, standard deviation of SEs (𝜎), and the value required 𝑘 through simulations. We also evaluate the
importance of individual feature utilising regression tree ensemble technique and simultaneously analysed the
sensitivity of each feature to predict the 𝑘-coverage probability of the network. The proposed approach has a
better prediction accuracy of the 𝑘-coverage metric for both with and without BEs scenarios (having R = 0.78
and Root Mean Square Error (RMSE) = 0.14 for with BEs scenario, and R = 0.78 and RMSE = 0.15 for without
BEs scenario). It can also be observed that the proposed approach achieves a higher accuracy with minimum
computational time complexity as compared to other existing benchmark algorithms.
1. Introduction

Technological advancements in micro-electromechanical systems
(MEMS) and wireless communication techniques have facilitated the
manufacturing of tiny, energy-efficient, and low-cost micro-sensing
devices with tremendous computational and functional capabilities. A
WMN is made of an colossal number of small, low-powered, low-cost
sensing devices possessing in-built sensing and wireless communica-
tion capabilities (Singh, Sharma, & Singh, 2021). Furthermore, these
networks require no framework and work in a decentralised and self-
organised fashion by exploiting single/multihop transmission over a
wireless channel to transmit the gathered information to the intended
receiver and communicate with the other sensing devices (Amutha,
Sharma, & Sharma, 2021; Sharma & Nagar, 2020). Currently, WMNs
are made of SNs with many in-built technologies like Global Position-
ing System (GPS) module, Infrared (IR) and thermal sensing modules
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with software, hardware, programming methodologies, and networking
capabilities on a single chip. Hence they have an enormous number
of applications, including border security, battlefield surveillance and
reconnaissance, industrial automation and control, home automation,
internet of things (IoT), telecommunication, healthcare applications,
precision agriculture through soil moisture, environment monitoring,
habitat monitoring, etc (Han et al., 2016; Kandris, Nakas, Vomvas, &
Koulouras, 2020; Kotiyal, Singh, Sharma, Nagar, & Lee, 2021; Seferagić,
Famaey, De Poorter, & Hoebeke, 2020; Singh, Gaurav, Meena, & Ku-
mar, 2020; Stoyanova, Nikoloudakis, Panagiotakis, Pallis, & Markakis,
2020). In the rest of the paper, a network means a WMN.

The effective coverage area (ECA) of SNs installed close to the
boundaries of the network region (NR) is less as compared with the
ECA of SNs placed in the centre of the NR; this phenomenon is known
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Acronyms

WMNs Wireless Multihop Networks
MEMS Micro-Electromechanical Systems
WSNs Wireless Sensor Networks
MIMO Multiple-Input Multiple-Output
SNs Sensor Nodes
GPS Global Positioning System
2D Two Dimensional
IR Infrared
SEs Shadowing Effects
IoT Internet of Things
BEs Boundary Effects
ML Machine Learning
RSR Rectangular Shaped Region
GRNN Generalised Regression Neural Network
ECA Effective Coverage Area
RMSE Root Mean Square Error
RSSI Received Signal Strength Indicator
ICE Individual Conditional Expectation
NR Network Region
PDP Partial Dependence Plot

as boundary effects (BEs). The analytical models applicable for the
coverage and connectivity analysis of the grand-scale networks are
not usable for the limited small networks because an increase in the
dimensions of the NR or the number of SNs can disrupt the linearity
and dependencies between the variables and induce non-linearity in
the network subtleties (Albert & Barabási, 2002; Brust, Ribeiro, &
Barbosa Filho, 2009; Dalveren & Ali, 2020; Nze, Guinand, & Pigne,
2011; Pal et al., 2022). In addition to BEs, radio waves propagate
through an environment full of impediments and susceptible to various
phenomena such as interference, shadowing, fading, and multipath
losses, etc., taking place in the propagation environment. Furthermore,
the existence of obstructions in the propagation environment and the
increase in the separation between transmitter and receiver deteriorates
the strength of the transmitted signal. Consequently, the received signal
power fluctuates widely and rapidly, this deviation in received signal
strength is called shadowing effects (SEs). It is imperative to consider
both BEs and SEs together whilst deriving analytical solutions for the
performance estimation of WMNs.

There exists an enormous literature which has examined the effect
of environmental characteristics like interference, fading, shadowing,
and multipath etcetera on the coverage performance of WMNs (Afshang
& Dhillon, 2017; Al-Turjman, Hassanein, & Ibnkahla, 2013; Alam, Kam-
ruzzaman, Karmakar, & Murshed, 2014; Amutha, Nagar, & Sharma,
2021; Debnath & Hossain, 2019; Fadoul, 2020; Hechmi, Zrelli, Kbida,
Khlaifi, & Ezzedine, 2018; Miao, Huang, & Jia, 2020; Tsai, 2008). These
works have significant contributions in characterising the coverage and
connectivity performance of wireless network because one way or the
other, they all have considered the environmental characteristics in
their analysis. However, the major drawback of these studies have been
to ignore the impact of BEs, a phenomenon affecting the performance
of WMNs.

There exists a limited number of published work which has con-
sidered BEs in their models to estimate the coverage and connectivity
metrics of WMNs (Habibiyan & Sabbagh, 2022; Khalid & Durrani,
2013; Laranjeira & Rodrigues, 2014; Liu, Jia, & Wang, 2018; Nagar,
Chaturvedi, & Soh, 2020a). These studies have provided a deep insight
of the influence of BEs on wireless networks performance, but, they
2

have assumed a disk based transmission range model. The models
proposed in these studies assumed a constant transmission range of SNs
in all directions which is neither appropriate nor observed.

Despite the fact that the above-mentioned models perform well
for the analysis of network performance, however, these approaches
require intensive simulations for their validation before the network
set-up. For example, the analytical model for the 𝑘-connectivity of
the network provided in Laranjeira and Rodrigues (2014) is validated
through MCS exhibiting high computational time, i.e., time taken to get
one single simulation result at a specified value of number of nodes,
sensing range, and 10000 iterations is more than fifteen hours. Other
examples could be seen in Khalid and Durrani (2013), Nagar et al.
(2020a) have also employed the MCS methods to substantiate their
proposed analytical solutions having high time complexity.

Further, it is important to mention that an increase in SN’s count
also increases the computational cost and time exponentially. To min-
imise the computational time and cost of MCS for the type of problem
we are addressing, one of the alternative way is to employ ML based
approaches. It is well-known that in many of the complex problems,
ML approaches have reduced the time from hours to even seconds and
predicted the results close to the results estimated by computationally
intensive algorithms. Hence, ML approaches provides fast and accurate
estimation of network performance metrics (Singh, Nagar, Sharma, &
Kotiyal, 2021).

Broadly, ML approaches are classified into two categories; unsu-
pervised and supervised learning approaches. Supervised learning ap-
proaches operate with label datasets whereas unsupervised learning
approaches work with unlabelled datasets. Further, supervised learn-
ing approaches are divided into classification and regression task.
A brief surveys on ML based approaches for WSNs, strategies, and
applications can be seen in Alsheikh, Lin, Niyato, and Tan (2014),
Chen, Challita, Saad, Yin, and Debbah (2019), Kumar, Amgoth, and
Annavarapu (2019). Currently, ML based approaches are being used for
various WSN applications such as target tracking (Mahfouz, Mourad-
Chehade, Honeine, Farah, & Snoussi, 2014), intrusion detection (Kang
& Kang, 2016; Singh, Nagar, et al., 2021; Tan et al., 2019), anomaly
detection (Mamun, Islam, & Kaosar, 2014) network connectivity (Stern,
Song, & Work, 2017), path loss prediction (Jo, Park, Lee, Choi, &
Park, 2020), coverage estimation in mobile networks (Fernandes et al.,
2020), routing in WSN (Nayak, Swetha, Gupta, & Madhavi, 2021),
remote sensing (Singh, Gaurav, Rai, & Beg, 2021), earth science (Kamel,
Afan, Sherif, Ahmed, & El-Shafie, 2021), block chain driven IoT (Inter-
net of Things) (Chowdhury, Rahman, Rahman, & Mahdy, 2020; Jeong
& Sim, 2021), smart cities (Sharma, Haque, & Blaabjerg, 2021), average
localisation error (Singh, Kotiyal, Sharma, Nagar, & Lee, 2020) and
many others. In addition to WSNs, ML based approaches are also being
employed in cellular networks, advanced and next-generation networks
(5G and 6G) (Ali et al., 2020; Du, Jiang, Wang, Ren, & Debbah, 2020;
Fourati, Maaloul, & Chaari, 2021; Jiang et al., 2016) for smart grid,
device-to device communications, femto/small cells, massive MIMOs,
heterogeneous networks, cognitive radios, energy harvesting, connec-
tivity and vehicular traffic prediction (Ide et al., 2015), radio coverage
prediction (Mohammadjafari et al., 2020), optimisation of coverage and
capacity (Dreifuerst et al., 2021), and so on.

GRNN is a supervised regression based ML method which can train
in almost no time using a limited training data set. In addition, it has a
non-iterative and highly parallel neural architecture. Earlier, Rahman,
Park, and Kim (2012) provided a location evaluation algorithms using
GRNN and weighted centroid localisation. They used RSS data to train
the proposed model and then estimated the target position in its close
neighbours. Recently, the authors in Jondhale and Deshpande (2018)
proposed two GRNN based algorithms named GRNN + KF and GRNN
+ UKF to compute the location of single target mobile in 2-D in WSN.
The same authors in Jondhale and Deshpande (2019) also proposed
a GRNN-based localisation approach which uses RSSI measurements in
large scale wheat farmland to locate the target. Most recently, Vijayaku-

mar and Balakrishnan (2021) proposed a GRNN-based ML algorithm to
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analyse agriculture monitoring data that can be used for automation.
They tested several ML algorithms and found that among all tested
algorithms GRNN is best suited for the task in hand. However, GRNN
based ML approach has not been applied for the coverage estimation
of WMN.

In this study, we propose an ML based technique to map the 𝑘-
coverage probability of a WMN with minimum computational time
requirements. We present a GRNN based ML approach on the simulated
data to predict the 𝑘-coverage performance considering SEs for two
different scenarios; with and without BEs. We extract six different
features, namely length of RSR, breadth of RSR, sensing range of
SNs, number of SNs, standard deviation of SEs (𝜎), and the value of
𝑘 required. Eventually, we have trained the GRNN algorithm using
these features and evaluated its performance using R, RMSE, bias and
computational time complexity as the performance metrics. To the best
of our awareness, no other research has been conducted and publicised
to tackle this issue through ML approach. The key contributions of this
research are listed below.

1. First, we develop an analytical model incorporating BEs only,
and then BEs plus SEs together to evaluate the 𝑘-coverage prob-
ability of a finite WMN spread in a finite RSR.

2. Secondly, we extract potential features through MCS and evalu-
ated their relative importance, and sensitivity in estimating the
𝑘-coverage metric of the WMN.

3. Lastly, we applied GRNN ML algorithm to evaluate the 𝑘-covera-
ge performance of the WMN speedily and accurately.

The remaining of the paper is organised as follows: The SN’s dis-
tribution model, sensing range models, and some coverage related
definitions are rendered in Section 2. We explained our analytical
model to compute the ECA of an SN in various boundary and non-
boundary regions using considered sensing range models in Section 3.
Further, an ML based approach to predict the 𝑘-coverage probability of
the WMN is discussed in Section 4. Results of the proposed ML based
approach for with and without BEs scenarios are given and studied in
Section 5 and Section 6 respectively. Finally, Section 7 concludes the
paper.

2. System model

Existing literature assumed different finite geometrical shapes like
a convex-shaped polygons (Gupta, Rao, & Venkatesh, 2014), a cir-
cle (Arora & Pal, 2022), a square (Katti, 2022), and a hexagon (Xu
& Lin, 2023). However, in this study, we assumed a finite RSR. The
main advantage of using an RSR is that a generalised RSR can be used
as a reference to derive analytical models for other shaped regions.
For instance, we can quickly obtain results for finite square regions by
simply considering equal length and width. Further, a generalised RSR
can be used as a reference to derive analytical models for other shaped
areas.

Here below, we briefly describe the SN distribution model, pertinent
sensing range models, coverage-related terms and definitions, and some
difficulties in evaluating the target detection probability in different
sub-regions of a RSR. Without the loss of generality, let all SNs are
homogeneous, i.e., each SN possesses the equal amount of energy,
computational, sensing, and transmission capabilities.

• Sensor Node Distribution Model: A static WMN is assumed to
be made by distributing 𝑁 number of SNs independently and
uniformly (i.e., probability of lying onto any spot within the
region is equal for each SN) inside a finite RSR ℜ of length ′𝑙′

meters by width ′𝑤′ meters. The location of an SN in the region
is denoted by 𝑃 (𝑥, 𝑦).
3

{𝑃 (𝑥, 𝑦) ∈ ℜ|0 ≤ 𝑥 ≤ 𝑙, 0 ≤ 𝑦 ≤ 𝑤} (1) a
• Sensing Range Models: In this work, we presume two most
widely employed sensing range models discussed briefly below.

– Circular disk sensing range model is widely employed for
deriving analytical solutions and evaluating the efficacy of
WMNs (Khalid & Durrani, 2013; Laranjeira & Rodrigues,
2014; Nagar et al., 2020a). A target is assumed to be de-
tected by an SN if it is positioned within any SN’s sensing
range. Mathematically, it can be rendered by Eq. (2)

𝑃𝑑𝑒𝑡 (𝑟) =

{

1, 𝑟 ≤ 𝑟𝑚𝑎𝑥
0, 𝑟 > 𝑟𝑚𝑎𝑥

(2)

This model considers a identical sensing range for all the
possible directions, which is not valid because most of the
signals are affected by impediments present in the propaga-
tion path, noise, radio fluctuations, interference, multipath
fading, reflection, and refraction etc., (Amutha, Sharma, &
Nagar, 2020; Nagar, Chaturvedi, & Soh, 2020b; Tsai, 2008).
Therefore, it is not suitable for practical applications. To
overcome the constraints of the circular disk sensing range
model, we consider another sensing range model named the
Log-normal shadowing path loss model.

– The Log-normal shadowing path loss model: This model ad-
dresses the shortcomings of the circular disk sensing range
model. We can utilise this model to characterise the signal
propagation in realistic environments. In addition, the ex-
istence of obstructions in signal propagation environment
causes shadowing and fading effects along with the path loss
due to the disperse of signal power radiated by the trans-
mitter. Additionally, the detection ability of SNs diminishes
with the increase in distance of target or event from the
SNs. Thus, the sensing range of SNs is not fixed in every
directions and depends on shadowing in different directions.
Now, assume that the location of a target or an event is
𝑟 units distant from the SN, then the probability that the
target or the event would be detected by the SN is given by
Eq. (3) (Tsai, 2008)

𝑃𝑑𝑒𝑡 (𝑟) = 𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

(3)

where, 𝜙 (𝜓) = 1
√

2𝜋
∫ ∞
𝜓 exp

(

−𝜒2𝜎
2

)

𝑑𝜒𝜎 ; 𝛽, 𝜎 and �̄� represent
the signal power decay factor, standard deviation of SEs,
and the expected sensing range of SNs respectively.

. Target detection probabilities for network 𝒌-coverage

This section derives the various expressions incorporating only BEs
nd BEs plus SEs together to calculate the 𝑘-coverage metric of a WMN.

.1. Target detection probability with BEs only

The probability that a target in the RSR would be sensed by
uniformly and randomly distributed SN positioned at a random

ocation 𝑃 within the RSR is represented by the overlapping area
𝐴
(

𝑃 ; 𝑟𝑚𝑎𝑥
)

∩ 𝑅|∕ (𝑙 ×𝑤). The effective obvoluting area of an SN is
alculated by dividing the whole RSR into various sub-regions such as
nner sub-region denoted by 𝐼 , lateral boundary sub-regions denoted
y 𝐵1, 𝐵2, 𝐵3, and 𝐵4, inner corner sub-regions denoted by 𝐶𝐼1, 𝐶𝐼2,
𝐼3, and 𝐶𝐼4, and outer corner sub-regions denoted by 𝐶𝑂1, 𝐶𝑂2, 𝐶𝑂3,
nd 𝐶 , respectively as shown in Fig. 1.
𝑂4
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Fig. 1. Different sub-regions of an RSR.

Fig. 2. ECA of an SN in 𝐼 , 𝐵1, and 𝐵2.

3.1.1. Target detection probability of an SN placed in inner sub-region I
This probability can be represented and calculated in the following

manner. Let there be an SN is lying at an arbitrary location denoted
by 𝑃 (𝑥, 𝑦) in sub-region 𝐼 of the RSR as shown in Fig. 2. We observe
that the coverage area of an SN does not suffer any kind of BEs in
𝐼 , therefore, the ECA of the SN is equal to 𝜋𝑟2𝑚𝑎𝑥. Consequently, the
probability that a random target position inside the RSR would be
detected by an SN lying in 𝐼 is computed as

𝑃 𝐼𝑑𝑒𝑡 =
𝜋𝑟2𝑚𝑎𝑥
𝑙 ×𝑤

(4)

3.1.2. Target detection probability of an SN placed in lateral boundary
sub-regions

Suppose that a arbitrary SN is positioned at a location 𝑃1 within the
lateral boundary sub-region 𝐵1. In this case, the ECA of an SN is not
equal to 𝜋𝑟2𝑚𝑎𝑥 because some area of the SN falls outside the side 𝑆1 of
the RSR as shown in Fig. 2. The ECA of the SN placed at 𝑃1 is denoted
by 𝐴

(

𝐵1
)

and is obtained by deducting the area of the circular part
emerged beyond side 𝑆1 from the circular disk area 𝜋𝑟2𝑚𝑎𝑥. The area of
the circular part emerged beyond side 𝑆1 is computed by subtracting
the triangular section area from the circular part area, thus

𝑎𝑟𝑒𝑎
(

𝐴𝐵𝑃1
)

= 𝑟2𝑚𝑎𝑥𝑐𝑜𝑠
−1

(

𝑥
𝑟𝑚𝑎𝑥

)

(5)

𝑎𝑟𝑒𝑎
(

𝛥𝐴𝑃 𝐵
)

= 𝑥
√

𝑟2 − 𝑥 (6)
4

1 𝑚𝑎𝑥
and the area of the circular part emerged beyond side 𝑆1 will be

𝑎𝑟𝑒𝑎
(

𝐴𝐵𝐴
)

= 𝑎𝑟𝑒𝑎
(

𝐴𝐵𝑃1
)

− 𝑎𝑟𝑒𝑎
(

𝛥𝐴𝑃1𝐵
)

= 𝑟2𝑚𝑎𝑥𝑐𝑜𝑠
−1

(

𝑥
𝑟𝑚𝑎𝑥

)

− 𝑥
√

𝑟2𝑚𝑎𝑥 − 𝑥2
(7)

Thus, the ECA of the SN lying inside sub-region 𝐵1 is given by

𝐴
(

𝐵1
)

= 𝜋𝑟2𝑚𝑎𝑥 − 𝑎𝑟𝑒𝑎
(

𝐴𝐵𝐴
)

= 𝜋𝑟2𝑚𝑎𝑥 − 𝑟
2
𝑚𝑎𝑥𝑐𝑜𝑠

−1
(

𝑥
𝑟𝑚𝑎𝑥

)

+ 𝑥
√

𝑟2𝑚𝑎𝑥 − 𝑥2
(8)

Similarly, the ECA of an SN in sub-regions 𝐵2, 𝐵3, and 𝐵4 are de-
noted by 𝐴

(

𝐵2
)

, 𝐴
(

𝐵3
)

, and 𝐴
(

𝐵4
)

, respectively and can be calculated
using Eq. (9) to Eq. (11).

𝐴
(

𝐵2
)

= 𝜋𝑟2𝑚𝑎𝑥 − 𝑟
2
𝑚𝑎𝑥𝑐𝑜𝑠

−1
(

𝑦
𝑟𝑚𝑎𝑥

)

+ 𝑦
√

𝑟2𝑚𝑎𝑥 − 𝑦2 (9)

𝐴
(

𝐵3
)

= 𝜋𝑟2𝑚𝑎𝑥 − 𝑟
2
𝑚𝑎𝑥𝑐𝑜𝑠

−1
(

𝑙 − 𝑥
𝑟𝑚𝑎𝑥

)

+ (𝑙 − 𝑥)
√

𝑟2𝑚𝑎𝑥 − (𝑙 − 𝑥)2 (10)

𝐴
(

𝐵4
)

= 𝜋𝑟2𝑚𝑎𝑥 − 𝑟
2
𝑚𝑎𝑥𝑐𝑜𝑠

−1
(

𝑤 − 𝑦
𝑟𝑚𝑎𝑥

)

+ (𝑤 − 𝑦)
√

𝑟2𝑚𝑎𝑥 − (𝑤 − 𝑦)2 (11)

The probability that an arbitrary target position within the RSR
would be sensed by an SN positioned in sub-region 𝐵1 is calculated
as

𝑃𝐵1
𝑑𝑒𝑡 =

𝐴
(

𝐵1
)

𝑙 ×𝑤
=
𝜋𝑟2𝑚𝑎𝑥 − 𝑟

2
𝑚𝑎𝑥𝑐𝑜𝑠

−1
(

𝑥
𝑟𝑚𝑎𝑥

)

+ 𝑥
√

𝑟2𝑚𝑎𝑥 − 𝑥2

𝑙 ×𝑤
(12)

Furthermore, the probability that an arbitrary target location would
be sensed by an SN lying in sub-regions 𝐵2, 𝐵3, and 𝐵4 is calculated
using Eq. (13), Eq. (14) and (15), respectively

𝑃𝐵2
𝑑𝑒𝑡 =

𝐴
(

𝐵2
)

𝑙 ×𝑤
=
𝜋𝑟2𝑚𝑎𝑥 − 𝑟

2
𝑚𝑎𝑥𝑐𝑜𝑠

−1
(

𝑦
𝑟𝑚𝑎𝑥

)

+ 𝑦
√

𝑟2𝑚𝑎𝑥 − 𝑦2

𝑙 ×𝑤
(13)

𝑃𝐵3
𝑑𝑒𝑡 =

𝐴
(

𝐵3
)

𝑙 ×𝑤
=
𝜋𝑟2𝑚𝑎𝑥 − 𝑟

2
𝑚𝑎𝑥𝑐𝑜𝑠

−1
(

𝑙−𝑥
𝑟𝑚𝑎𝑥

)

+ (𝑙 − 𝑥)
√

𝑟2𝑚𝑎𝑥 − (𝑙 − 𝑥)2

𝑙 ×𝑤
(14)

𝑃𝐵4
𝑑𝑒𝑡 =

𝐴
(

𝐵4
)

𝑙 ×𝑤
=
𝜋𝑟2𝑚𝑎𝑥 − 𝑟

2
𝑚𝑎𝑥𝑐𝑜𝑠

−1
(

𝑤−𝑦
𝑟𝑚𝑎𝑥

)

+ (𝑤 − 𝑦)
√

𝑟2𝑚𝑎𝑥 − (𝑤 − 𝑦)2

𝑙 ×𝑤
(15)

Further, it is noteworthy that the expected ECA and the target
detection probability of an arbitrary SN placed in sub-regions 𝐵1 and
𝐵2 are equal to the expected ECA and target detection probability of the
SN positioned in sub-region 𝐵3 and 𝐵4 respectively due to the symmetry
of these sub-regions.

3.1.3. Target detection probability of an SN placed in inner corner sub-
regions

Here, we presume that an arbitrary SN is positioned at a location 𝑃
in inner corner sub-region 𝐶𝐼1. When the SN is lying in sub-region 𝐶𝐼1,
some of its coverage area falls outside the sides’ 𝑆1 and 𝑆2 as shown
in Fig. 3. Thus, the ECA of the SN positioned in inner corner 𝐶𝐼1 is not
equal to 𝜋𝑟2𝑚𝑎𝑥, and is obtained by deducting the area of two circular
parts emerged beyond 𝑆1 and 𝑆2 from the circular disk area 𝜋𝑟2𝑚𝑎𝑥. The
area of both the circular segments is calculated in a similar manner as
we calculated 𝐴

(

𝐵1
)

. Therefore, we get

𝑎𝑟𝑒𝑎
(

𝐴𝐵
)

= 𝑎𝑟𝑒𝑎
(

𝐴𝐵𝑃
)

− 𝑎𝑟𝑒𝑎 (𝛥𝐴𝑃𝐵)

= 𝑟2𝑚𝑎𝑥𝑐𝑜𝑠
−1

(

𝑥
)

− 𝑥
√

𝑟2𝑚𝑎𝑥 − 𝑥2
(16)
𝑟𝑚𝑎𝑥
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Fig. 3. ECA of an SN in sub-region 𝐶𝐼1.

and

𝑎𝑟𝑒𝑎
(

𝐶𝐷
)

= 𝑎𝑟𝑒𝑎
(

𝐶𝐷𝑃
)

− 𝑎𝑟𝑒𝑎 (𝛥𝐶𝑃𝐷)

= 𝑟2𝑚𝑎𝑥𝑐𝑜𝑠
−1

(

𝑦
𝑟𝑚𝑎𝑥

)

− 𝑦
√

𝑟2𝑚𝑎𝑥 − 𝑦2
(17)

Consequently, the ECA of an SN positioned in sub-region 𝐶𝐼1 de-
noted by 𝐴

(

𝐶𝐼1
)

is obtained as

𝐴
(

𝐶𝐼1
)

= 𝜋𝑟2𝑚𝑎𝑥 − 𝑎𝑟𝑒𝑎
(

𝐴𝐵
)

− 𝑎𝑟𝑒𝑎
(

𝐶𝐷
)

= 𝜋𝑟2𝑚𝑎𝑥 − 𝑟
2
𝑚𝑎𝑥𝑐𝑜𝑠

−1
(

𝑥
𝑟𝑚𝑎𝑥

)

− 𝑟2𝑚𝑎𝑥𝑐𝑜𝑠
−1

(

𝑦
𝑟𝑚𝑎𝑥

)

+ 𝑥
√

𝑟2𝑚𝑎𝑥 − 𝑥2 + 𝑦
√

𝑟2𝑚𝑎𝑥 − 𝑦2

(18)

Similarly, the ECA of an SN in sub-regions 𝐶𝐼2, 𝐶𝐼3, and 𝐶𝐼4 is
denoted by 𝐴

(

𝐶𝐼2
)

, 𝐴
(

𝐶𝐼3
)

, and 𝐴
(

𝐶𝐼4
)

, respectively and is calculated
using Eq. (19) to Eq. (21):

𝐴
(

𝐶𝐼2
)

= 𝜋𝑟2𝑚𝑎𝑥 − 𝑟
2
𝑚𝑎𝑥𝑐𝑜𝑠

−1
(

𝑙 − 𝑥
𝑟𝑚𝑎𝑥

)

− 𝑟2𝑚𝑎𝑥𝑐𝑜𝑠
−1

(

𝑦
𝑟𝑚𝑎𝑥

)

+ (𝑙 − 𝑥)
√

𝑟2𝑚𝑎𝑥 − (𝑙 − 𝑥)2 + 𝑦
√

𝑟2𝑚𝑎𝑥 − 𝑦2
(19)

𝐴
(

𝐶𝐼3
)

= 𝜋𝑟2𝑚𝑎𝑥 − 𝑟
2
𝑚𝑎𝑥𝑐𝑜𝑠

−1
(

𝑙 − 𝑥
𝑟𝑚𝑎𝑥

)

− 𝑟2𝑚𝑎𝑥𝑐𝑜𝑠
−1

(

𝑙 − 𝑦
𝑟𝑚𝑎𝑥

)

+ (𝑙 − 𝑥)
√

𝑟2𝑚𝑎𝑥 − (𝑙 − 𝑥)2 + (𝑤 − 𝑦)
√

𝑟2𝑚𝑎𝑥 − (𝑤 − 𝑦)2

(20)

𝐴
(

𝐶𝐼4
)

= 𝜋𝑟2𝑚𝑎𝑥 − 𝑟
2
𝑚𝑎𝑥𝑐𝑜𝑠

−1
(

𝑥
𝑟𝑚𝑎𝑥

)

− 𝑟2𝑚𝑎𝑥𝑐𝑜𝑠
−1

(

𝑤 − 𝑦
𝑟𝑚𝑎𝑥

)

+ 𝑥
√

𝑟2𝑚𝑎𝑥 − 𝑥2 + (𝑤 − 𝑦)
√

𝑟2𝑚𝑎𝑥 − (𝑤 − 𝑦)2
(21)

The probability that an arbitrary target position in the RSR would
be sensed by an SN positioned in sub-region 𝐶𝐼1 is calculated as

𝑃 𝐶𝐼1
𝑑𝑒𝑡 =

𝐴
(

𝐶𝐼1
)

𝐴

=
𝜋𝑟2𝑚𝑎𝑥 − 𝑟

2
𝑚𝑎𝑥𝑐𝑜𝑠

−1
(

𝑥
𝑟𝑚𝑎𝑥

)

− 𝑟2𝑚𝑎𝑥𝑐𝑜𝑠
−1

(

𝑦
𝑟𝑚𝑎𝑥

)

+ 𝑥
√

𝑟2𝑚𝑎𝑥 − 𝑥2 + 𝑦
√

𝑟2𝑚𝑎𝑥 − 𝑦2

𝐴
(22)

Furthermore, the probability that an arbitrary target location would
be sensed by an SN lying in sub-regions 𝐶 , 𝐶 , and 𝐶 is calculated
5

𝐼2 𝐼3 𝐼4
using Eq. (23), Eq. (24), and Eq. (25), respectively

𝑃𝐶𝐼2𝑑𝑒𝑡 =
𝐴
(

𝐶𝐼2
)

𝐴
=
𝜋𝑟2𝑚𝑎𝑥 − 𝑟

2
𝑚𝑎𝑥𝑐𝑜𝑠

−1
(

𝑙−𝑥
𝑟𝑚𝑎𝑥

)

− 𝑟2𝑚𝑎𝑥𝑐𝑜𝑠
−1

(

𝑦
𝑟𝑚𝑎𝑥

)

𝐴

+
(𝑙 − 𝑥)

√

𝑟2𝑚𝑎𝑥 − (𝑙 − 𝑥)2 + 𝑦
√

𝑟2𝑚𝑎𝑥 − 𝑦2

𝐴

(23)

𝑃 𝐶𝐼3
𝑑𝑒𝑡 =

𝐴
(

𝐶𝐼3
)

𝐴
=
𝜋𝑟2𝑚𝑎𝑥 − 𝑟

2
𝑚𝑎𝑥𝑐𝑜𝑠

−1
(

𝑙−𝑥
𝑟𝑚𝑎𝑥

)

− 𝑟2𝑚𝑎𝑥𝑐𝑜𝑠
−1

(

𝑙−𝑦
𝑟𝑚𝑎𝑥

)

𝐴

+
(𝑙 − 𝑥)

√

𝑟2𝑚𝑎𝑥 − (𝑙 − 𝑥)2 + (𝑤 − 𝑦)
√

𝑟2𝑚𝑎𝑥 − (𝑤 − 𝑦)2

𝐴
(24)

𝑃𝐶𝐼4𝑑𝑒𝑡 =
𝐴
(

𝐶𝐼4
)

𝐴
=
𝜋𝑟2𝑚𝑎𝑥 − 𝑟

2
𝑚𝑎𝑥𝑐𝑜𝑠

−1
(

𝑥
𝑟𝑚𝑎𝑥

)

− 𝑟2𝑚𝑎𝑥𝑐𝑜𝑠
−1

(

𝑤−𝑦
𝑟𝑚𝑎𝑥

)

𝐴

+
𝑥
√

𝑟2𝑚𝑎𝑥 − 𝑥2 + (𝑤 − 𝑦)
√

𝑟2𝑚𝑎𝑥 − (𝑤 − 𝑦)2

𝐴

(25)

It is noteworthy that the mean ECA of an SN in individual inner
corner sub-region will be equal because of the symmetry of the RSR; as
a result, the probability of arbitrary target position detection will also
be equal in every inner corner sub-region.

3.1.4. Target detection probability of an SN placed in outer corner sub-
regions

Assuming that an SN is placed at a position P in outer corner sub-
region 𝐶𝑂1 and its ECA is denoted by 𝐴

(

𝐶𝑂1
)

. In this case, some
coverage area of the SN falls outside the sides’ 𝑆1, 𝑆2 and vertex 𝑉1
as shown in Fig. 4. Therefore, ECA of the SN is less than 𝜋𝑟2𝑚𝑎𝑥, and is
obtained by summing the area of the rectangular region OGPH as well
as the area of three sectors viz., sector 𝐵𝐹𝑃 , sector 𝐵𝐶𝑃 , and sector
𝐶𝐸𝑃 as depicted in Fig. 4. The entire area of sector 𝐵𝐶𝑃 falls within
the RSR. However, some area of sectors 𝐵𝐹𝑃 and 𝐶𝐸𝑃 lie outside the
RSR, thus, it is necessary to subtract these areas from their respective
sector areas, we get

𝑎𝑟𝑒𝑎 (𝑂𝐺𝑃𝐻) = 𝑥𝑦, (26)

𝑎𝑟𝑒𝑎
(

𝐵𝐶𝑃 + 𝐵𝐹𝑃 + 𝐶𝐸𝑃
)

= 3
4
𝜋𝑟2𝑚𝑎𝑥 (27)

The area of sectors 𝐵𝐹𝑃 and 𝐶𝐸𝑃 lying outside the network region
are computed as follows:

The area of sector 𝐵𝐹𝑃 lying outside the network region will be
equal to the Area

(

𝐴𝐹𝑃
)

- Area(𝛥𝐴𝐻𝑃 ) and is given by

𝐴𝑟𝑒𝑎
(

𝐴𝐹𝑃
)

−𝐴𝑟𝑒𝑎 (𝛥𝐴𝐻𝑃 ) =
𝜋𝑟2𝑚𝑎𝑥
2

𝑐𝑜𝑠−1
(

𝑥
𝑟𝑚𝑎𝑥

)

− 𝑥
2

√

𝑟2𝑚𝑎𝑥 − 𝑥2 (28)

Similarly, the Area
(

𝐶𝐸𝑃
)

lying outside the network region is cal-
culated using Eq. (29)

𝐴𝑟𝑒𝑎
(

𝐷𝐸𝑃
)

−𝐴𝑟𝑒𝑎 (𝛥𝐷𝐺𝑃 ) =
𝜋𝑟2𝑚𝑎𝑥
2

𝑐𝑜𝑠−1
(

𝑦
𝑟𝑚𝑎𝑥

)

−
𝑦
2

√

𝑟2𝑚𝑎𝑥 − 𝑦2 (29)

Therefore, the ECA 𝐴
(

𝐶𝑂1
)

of an SN in outer corner sub-region
(

𝐶𝑂1
)

of a RSR will be

𝐴
(

𝐶𝑂1
)

= 𝑥𝑦 + 3
4
𝜋𝑟2𝑚𝑎𝑥 −

𝑟2𝑚𝑎𝑥
2
𝑐𝑜𝑠−1

(

𝑥
𝑟𝑚𝑎𝑥

)

−
𝑟2𝑚𝑎𝑥
2
𝑐𝑜𝑠−1

(

𝑦
𝑟𝑚𝑎𝑥

)

+ 𝑥
2

√

𝑟2𝑚𝑎𝑥 − 𝑥2 +
𝑦
2

√

𝑟2𝑚𝑎𝑥 − 𝑦2
(30)

Likewise, the ECA of an SN in outer corner sub-regions 𝐶𝑂2, 𝐶𝑂3,
and 𝐶 are denoted by 𝐴

(

𝐶
)

, 𝐴
(

𝐶
)

and 𝐴
(

𝐶
)

respectively, and
𝑂4 𝑂2 𝑂3 𝑂4
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Fig. 4. ECA of an SN in sub-region 𝐶𝑂1.

can be calculated in a similar manner using Eq. (31) to Eq. (33)

𝐴
(

𝐶𝑂2
)

= (𝑙 − 𝑥) 𝑦 + 3
4
𝜋𝑟2𝑚𝑎𝑥 −

𝑟2𝑚𝑎𝑥
2
𝑐𝑜𝑠−1

(

𝑙 − 𝑥
𝑟𝑚𝑎𝑥

)

−
𝑟2𝑚𝑎𝑥
2
𝑐𝑜𝑠−1

(

𝑦
𝑟𝑚𝑎𝑥

)

+
(𝑙 − 𝑥)

2

√

𝑟2𝑚𝑎𝑥 − (𝑙 − 𝑥)2 +
𝑦
2

√

𝑟2𝑚𝑎𝑥 − 𝑦2

(31)

𝐴
(

𝐶𝑂3
)

= (𝑙 − 𝑥) (𝑤 − 𝑦) + 3
4
𝜋𝑟2𝑚𝑎𝑥

−
𝑟2𝑚𝑎𝑥
2
𝑐𝑜𝑠−1

(

𝑙 − 𝑥
𝑟𝑚𝑎𝑥

)

−
𝑟2𝑚𝑎𝑥
2
𝑐𝑜𝑠−1

(

𝑤 − 𝑦
𝑟𝑚𝑎𝑥

)

+
(𝑙 − 𝑥)

2

√

𝑟2𝑚𝑎𝑥 − (𝑙 − 𝑥)2 +
(𝑤 − 𝑦)

2

√

𝑟2𝑚𝑎𝑥 − (𝑤 − 𝑦)2

(32)

𝐴
(

𝐶𝑂4
)

=𝑥 (𝑤 − 𝑦) + 3
4
𝜋𝑟2𝑚𝑎𝑥 −

𝑟2𝑚𝑎𝑥
2
𝑐𝑜𝑠−1

(

𝑥
𝑟𝑚𝑎𝑥

)

−
𝑟2𝑚𝑎𝑥
2
𝑐𝑜𝑠−1

(

𝑤 − 𝑦
𝑟𝑚𝑎𝑥

)

+ 𝑥
2

√

𝑟2𝑚𝑎𝑥 − 𝑥2 +
(𝑤 − 𝑦)

2

√

𝑟2𝑚𝑎𝑥 − (𝑤 − 𝑦)2

(33)

The probability that an arbitrary target position inside the RSR
would be detected by an SN lying in sub-region 𝐶𝑂1 is calculated as

𝑃𝐶𝑂1𝑑𝑒𝑡 =
𝑥𝑦 + 3

4𝜋𝑟
2
𝑚𝑎𝑥 −

𝑟2𝑚𝑎𝑥
2 𝑐𝑜𝑠−1

(

𝑥
𝑟𝑚𝑎𝑥

)

− 𝑟2𝑚𝑎𝑥
2 𝑐𝑜𝑠−1

(

𝑦
𝑟𝑚𝑎𝑥

)

𝐴

+
𝑥
2

√

𝑟2𝑚𝑎𝑥 − 𝑥2 +
𝑦
2

√

𝑟2𝑚𝑎𝑥 − 𝑦2

𝐴

(34)

and, the probability that an arbitrary target location would be
sensed by an arbitrary SN lying in sub-regions 𝐶𝑂2, 𝐶𝑂3, and 𝐶𝑂4 is
calculated using Eq. (35), Eq. (36) and (37), respectively

𝑃𝐶𝑂2𝑑𝑒𝑡 =
(𝑙 − 𝑥) 𝑦 + 3

4𝜋𝑟
2
𝑚𝑎𝑥 −

𝑟2𝑚𝑎𝑥
2 𝑐𝑜𝑠−1

(

𝑙−𝑥
𝑟𝑚𝑎𝑥

)

− 𝑟2𝑚𝑎𝑥
2 𝑐𝑜𝑠−1

(

𝑦
𝑟𝑚𝑎𝑥

)

𝐴

+
+ (𝑙−𝑥)

2

√

𝑟2𝑚𝑎𝑥 − (𝑙 − 𝑥)2 + 𝑦
2

√

𝑟2𝑚𝑎𝑥 − 𝑦2

𝐴

(35)

𝑃 𝐶𝑂3
𝑑𝑒𝑡 =

(𝑙 − 𝑥) (𝑤 − 𝑦) + 3
4
𝜋𝑟2𝑚𝑎𝑥 −

𝑟2𝑚𝑎𝑥
2
𝑐𝑜𝑠−1

(

𝑙−𝑥
𝑟𝑚𝑎𝑥

)

− 𝑟2𝑚𝑎𝑥
2
𝑐𝑜𝑠−1

(

(𝑤−𝑦)
𝑟𝑚𝑎𝑥

)

𝐴

+
(𝑙−𝑥)
2

√

𝑟2𝑚𝑎𝑥 − (𝑙 − 𝑥)2 + (𝑤−𝑦)
2

√

𝑟2𝑚𝑎𝑥 − (𝑤 − 𝑦)2
(36)
6

𝐴

𝑃𝐶𝑂4𝑑𝑒𝑡 =
𝑥 (𝑤 − 𝑦) + 3

4𝜋𝑟
2
𝑚𝑎𝑥 −

𝑟2𝑚𝑎𝑥
2 𝑐𝑜𝑠−1

(

𝑥
𝑟𝑚𝑎𝑥

)

− 𝑟2𝑚𝑎𝑥
2 𝑐𝑜𝑠−1

(

𝑤−𝑦
𝑟𝑚𝑎𝑥

)

𝐴

+
𝑥
2

√

𝑟2𝑚𝑎𝑥 − 𝑥2 +
(𝑤−𝑦)

2

√

𝑟2𝑚𝑎𝑥 − (𝑤 − 𝑦)2

𝐴

(37)

It is necessary to mention that the mean ECA of an SN in individual
outer corner sub-region will be same because of the symmetry of the
RSR; as a result, the probability of an arbitrary target position detection
will also be equal.

Now, we average the target detection probability of an SN over
different sub-regions by considering BEs to estimate the expected prob-
ability of target detection by an arbitrary SN deployed inside the RSR

𝐸
(

𝑃𝑑𝑒𝑡
)

= ∫

𝑤−𝑟𝑚𝑎𝑥

𝑟𝑚𝑎𝑥
∫

𝑙−𝑟𝑚𝑎𝑥

𝑟𝑚𝑎𝑥

(

𝑃 𝐼𝑑𝑒𝑡
𝐴

)

𝑑𝑥 𝑑𝑦

+ 2∫

𝑤−𝑟𝑚𝑎𝑥

𝑟𝑚𝑎𝑥
∫

𝑟𝑚𝑎𝑥

0

(

𝑃𝐵1
𝑑𝑒𝑡
𝐴

)

𝑑𝑥 𝑑𝑦

+ 2∫

𝑟𝑚𝑎𝑥

0 ∫

𝑙−𝑟𝑚𝑎𝑥

𝑟𝑚𝑎𝑥

(

𝑃𝐵2
𝑑𝑒𝑡
𝐴

)

𝑑𝑥 𝑑𝑦

+ 4∫

𝑟𝑚𝑎𝑥
√

𝑟2𝑚𝑎𝑥−𝑥2
∫

𝑟𝑚𝑎𝑥

0

(

𝑃𝐶𝐼1𝑑𝑒𝑡
𝐴

)

𝑑𝑥 𝑑𝑦

+ 4∫

√

𝑟2𝑚𝑎𝑥−𝑥2

𝑥 ∫

𝑟𝑚𝑎𝑥

0

(

𝑃𝐶𝑂1𝑑𝑒𝑡
𝐴

)

𝑑𝑥 𝑑𝑦

(38)

3.2. Target detection probability with BEs and SEs

In this part, we explain the analytical formulation for 𝑘-coverage
probability considering BEs and SEs concurrently.

3.2.1. Target detection probability of an SN placed in sub-region I
The probability calculation under this case is based on the premise

that the coverage area of an arbitrary SN, lying in the inner sub-
region 𝐼 , does not experience BEs because of its position far from the
boundaries of the RSR. The probability that the SN is located at a
position with separation 𝑟 to the target location is 2𝜋𝑟∕𝐴 × 𝑑𝑟, where
𝑑𝑟 is a tiny difference in separation as shown in Fig. 5. Thus, the
probability that the target position would be sensed by this arbitrary
SN is calculated as

𝑃 𝐼𝑑𝑒𝑡 (𝑟) = ∫

𝑟𝑚𝑎𝑥

0
𝑃𝑑𝑒𝑡 (𝑟) ×

2𝜋𝑟
𝐴

𝑑𝑟

= ∫

𝑟𝑚𝑎𝑥

0
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

× 2𝜋𝑟
𝐴

𝑑𝑟
(39)

3.2.2. Target detection probability of an SN placed in sub-region 𝐵1
Assuming that an arbitrary SN is deployed at a random location

in sub-region 𝐵1 of the RSR, the coverage area of this arbitrary SN is
limited by side 𝑆1. Thus, the probability that the target is positioned at
a point with separation 𝑟 to the

SN location is 2𝜋𝑟 × 𝑑𝑟∕𝐴, 𝑟 ∈ [0, 𝑥] and 2𝑟
(

𝜋 − 𝑐𝑜𝑠−1 (𝑥∕𝑟)
)

× 𝑑𝑟∕𝐴,
𝑟 ∈ [𝑥, 𝑟𝑚𝑎𝑥], where 𝑑𝑟 is a minute deviation in separation and can be
computed with the help of Fig. 6. Thus, the probability that the target
would be sensed by this arbitrary SN is computed as

𝑃𝐵1
𝑑𝑒𝑡 (𝑟) = ∫

𝑥

0
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

× 2𝜋𝑟
𝐴

𝑑𝑟

+ ∫

𝑟𝑚𝑎𝑥

𝑥
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

×
2𝑟

(

𝜋 − 𝑐𝑜𝑠−1 (𝑥∕𝑟)
)

𝐴
𝑑𝑟

= ∫

𝑟𝑚𝑎𝑥

0
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

× 2𝜋𝑟
𝐴

𝑑𝑟

−
𝑟𝑚𝑎𝑥

𝜙
(

10𝛽 log10 (𝑟∕�̄�)
)

×
2𝑟𝑐𝑜𝑠−1 (𝑥∕𝑟)

𝑑𝑟

(40)
∫𝑥 𝜎 𝐴
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Note that in a shadowing environment, the probability that a target
would be sensed by an arbitrary SN lying in lateral boundary sub-
regions 𝐵1 and 𝐵3 will be equal because of the symmetry of the
RSR.

3.2.3. Target detection probability of an SN placed in sub-region 𝐵2
It is presumed that an arbitrary SN is placed at a position in sub-

region 𝐵2 of the RSR where the coverage area of the SN is limited
by side 𝑆2. Therefore, the probability that the target is lying at a
location with separation 𝑟 to SN position is 2𝜋𝑟 × 𝑑𝑟∕𝐴, 𝑟 ∈ [0, 𝑦] and
2𝑟

(

𝜋 − 𝑐𝑜𝑠−1 (𝑦∕𝑟)
)

× 𝑑𝑟∕𝐴, 𝑟 ∈ [𝑦, 𝑟𝑚𝑎𝑥], where 𝑑𝑟 is a tiny difference
in separation and can be computed with the help of Fig. 6. Thus, the
probability that the target would be sensed by this arbitrary SN is
computed as

𝑃𝐵2
𝑑𝑒𝑡 (𝑟) = ∫

𝑦

0
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

× 2𝜋𝑟
𝐴

𝑑𝑟

+ ∫

𝑟𝑚𝑎𝑥

𝑦
𝜙

⎛

⎜

⎜

⎜

⎝

10𝛽 log10
(

𝑟
�̄�

)

𝜎

⎞

⎟

⎟

⎟

⎠

×
2𝑟

(

𝜋 − 𝑐𝑜𝑠−1 (𝑦∕𝑟)
)

𝐴
𝑑𝑟

= ∫

𝑟𝑚𝑎𝑥

0
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

× 2𝜋𝑟
𝐴

𝑑𝑟

− ∫

𝑟𝑚𝑎𝑥

𝑦
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

×
2𝑟𝑐𝑜𝑠−1 (𝑦∕𝑟)

𝐴
𝑑𝑟

(41)

Similar to 𝐵1 and 𝐵3, the probability that a target would be sensed
by an arbitrary SN lying in lateral boundary sub-regions 𝐵2 and 𝐵4 will
also be equal.

3.2.4. Target detection probability of an SN placed in sub-region 𝐶𝐼1
The coverage area of an arbitrary SN positioned in sub-region 𝐶𝐼1

is affected by side 𝑆1 and 𝑆2 of the RSR. In this case, the position
of an SN denoted by 𝑃 (𝑥, 𝑦) may have either of the two conditions
i.e., 𝑥 ≤ 𝑦 or 𝑥 > 𝑦. However, the mathematical composition for the
probability of target position detection will remain the similar; hence,
we assume a position of the SN with 𝑥 ≤ 𝑦. The probability that a
target is positioned at a location with a separation 𝑟 to this arbitrary SN
position is 2𝜋𝑟 × 𝑑𝑟∕𝐴, 𝑟 ∈ [0, 𝑥], 2𝑟

(

𝜋 − 𝑐𝑜𝑠−1 (𝑥∕𝑟)
)

× 𝑑𝑟∕𝐴, 𝑟 ∈ [𝑥, 𝑦],
and 2𝑟

(

𝜋 − 𝑐𝑜𝑠−1 (𝑥∕𝑟) − 𝑐𝑜𝑠−1 (𝑦∕𝑟)
)

× 𝑑𝑟∕𝐴, 𝑟 ∈ [𝑦, 𝑟𝑚𝑎𝑥], where 𝑑𝑟 is
a small variation in separation and can be computed with the help of
Fig. 6. Therefore, the probability that the target would be sensed by
this arbitrary SN is

𝑃𝐶𝐼1𝑑𝑒𝑡 (𝑟) = ∫

𝑥

0
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

× 2𝜋𝑟
𝐴

𝑑𝑟

+ ∫

𝑦

𝑥
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

×
2𝑟

(

𝜋 − 𝑐𝑜𝑠−1 (𝑥∕𝑟)
)

𝐴
𝑑𝑟

+ ∫

𝑟𝑚𝑎𝑥

𝑦
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

×
2𝑟

(

𝜋 − 𝑐𝑜𝑠−1 (𝑥∕𝑟) − 𝑐𝑜𝑠−1 (𝑦∕𝑟)
)

𝐴
𝑑𝑟

= ∫

𝑟𝑚𝑎𝑥

0
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

× 2𝜋𝑟
𝐴

𝑑𝑟

− ∫

𝑟𝑚𝑎𝑥

𝑥
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

×
2𝑟𝑐𝑜𝑠−1 (𝑥∕𝑟)

𝐴
𝑑𝑟

− ∫

𝑟𝑚𝑎𝑥

𝑦
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

×
2𝑟𝑐𝑜𝑠−1 (𝑦∕𝑟)

𝐴
𝑑𝑟

(42)

For an SN deployed in inner corner sub-regions 𝐶𝐼1, 𝐶𝐼2, 𝐶𝐼3, and
𝐶𝐼4, the probability that the target would be located at a position
with a separation 𝑟 to the SN location will be equal. Consequently, the
probability that the target location will be sensed by an arbitrary SN
deployed in either of the inner corner sub-region will also be equal.
7

Fig. 5. Sensing range in shadowing environment.

Fig. 6. Probability that the target is positioned at a point with distance 𝑟 to the node
lying in 𝐵1, 𝐵2, and 𝐶𝐼1.

3.2.5. Target detection probability of an SN placed in sub-region 𝐶𝑂1

The coverage area of an SN deployed at a position 𝑃 (𝑥, 𝑦) in outer
corner sub-region 𝐶𝑂1 is influenced by sides 𝑆1, 𝑆2 and vertex 𝑉1 of
the RSR as shown in Fig. 7. For a given position of an SN in sub-region
𝐶𝑂1, we find two instances to compute the probability that the SN is
positioned at a location with separation 𝑟 to the target location and are
discussed below:

• When 𝑥 ≤ 𝑦, i.e., 𝑥 ∈
(

0, 𝑟𝑚𝑎𝑥√

2

)

, 𝑦 ∈
(

𝑥,
√

𝑟2𝑚𝑎𝑥 − 𝑥2
)

In this case, the probabilities that an SN is deployed at a position
with separation 𝑟 to the target location is 2𝜋𝑟 × 𝑑𝑟∕𝐴, 𝑟 ∈ [0, 𝑥],
2𝑟

(

𝜋 − 𝑐𝑜𝑠−1 (𝑥∕𝑟)
)

× 𝑑𝑟∕𝐴, 𝑟 ∈ [𝑥, 𝑦], and
𝑟
(

1.5𝜋 − 𝑐𝑜𝑠−1 (𝑥∕𝑟) − 𝑐𝑜𝑠−1 (𝑦∕𝑟)
)

× 𝑑𝑟∕𝐴, 𝑟 ∈ [𝑦, 𝑟𝑚𝑎𝑥], where 𝑑𝑟
is a negligible difference in separation and can be computed with
the help of Fig. 7. Therefore, the probability that a target position
in shadowing environment will be sensed by an SN placed in
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Fig. 7. Probability that the target is positioned at a point with distance r to the node
lying in 𝐶𝑂1.

sub-region 𝐶𝑂1 of the RSR is calculated as

𝑃𝐶𝑂1′𝑑𝑒𝑡 (𝑟) = ∫

𝑥

0
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

× 2𝜋𝑟
𝐴

𝑑𝑟

+ ∫

𝑦

𝑥
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

×
2𝑟

(

𝜋 − 𝑐𝑜𝑠−1 (𝑥∕𝑟)
)

𝐴
𝑑𝑟

+ ∫

𝑟𝑚𝑎𝑥

𝑦
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

×
𝑟
(

1.5𝜋 − 𝑐𝑜𝑠−1 (𝑥∕𝑟) − 𝑐𝑜𝑠−1 (𝑦∕𝑟)
)

𝐴
𝑑𝑟

(43)

• When 𝑥 > 𝑦, i.e., 𝑥 ∈
(

0, 𝑟𝑚𝑎𝑥√

2

)

, 𝑦 ∈ (0, 𝑥)

Here, the probabilities that a target is positioned at a place with
separation 𝑟 to SN position in sub-region is 2𝜋𝑟 × 𝑑𝑟∕𝐴, 𝑟 ∈ [0, 𝑦],
2𝑟

(

𝜋 − 𝑐𝑜𝑠−1 (𝑥∕𝑟)
)

× 𝑑𝑟∕𝐴, 𝑟 ∈ [𝑦, 𝑥], and
𝑟
(

1.5𝜋 − 𝑐𝑜𝑠−1 (𝑥∕𝑟) − 𝑐𝑜𝑠−1 (𝑦∕𝑟)
)

× 𝑑𝑟∕𝐴, 𝑟 ∈ [𝑥, 𝑟𝑚𝑎𝑥], where 𝑑𝑟
is a tiny difference in separation can be computed with the help
of Fig. 7. Thus, the probability that a target lying in shadowing
environment will be sensed by an SN placed in this part of the
sub-region 𝐶𝑂1 is computed as

𝑃𝐶𝑂1′′𝑑𝑒𝑡 (𝑟) = ∫

𝑦

0
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

× 2𝜋𝑟
𝐴

𝑑𝑟

+ ∫

𝑥

𝑦
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

×
2𝑟

(

𝜋 − 𝑐𝑜𝑠−1 (𝑦∕𝑟)
)

𝐴
𝑑𝑟

+ ∫

𝑟𝑚𝑎𝑥

𝑥
𝜙
(

10𝛽 log10 (𝑟∕�̄�)
𝜎

)

×
𝑟
(

1.5𝜋 − 𝑐𝑜𝑠−1 (𝑥∕𝑟) − 𝑐𝑜𝑠−1 (𝑦∕𝑟)
)

𝐴
𝑑𝑟

(44)

• When 𝑥 > 𝑦, but 𝑥 ∈
(

𝑟𝑚𝑎𝑥
√

2
, 𝑟𝑚𝑎𝑥

)

, 𝑦 ∈
(

0,
√

𝑟2𝑚𝑎𝑥 − 𝑥2
)

In this part, the probability of target position detection by an SN
lying at a location with 𝑥 > 𝑦 will be equal to 𝑃𝐶𝑂1′′ , but, the
coordinates of the SN position in sub-region 𝐶𝑂1 will follow the
range 𝑥 ∈

(

𝑟𝑚𝑎𝑥
√

2
, 𝑟𝑚𝑎𝑥

)

, 𝑦 ∈
(

0,
√

𝑟2𝑚𝑎𝑥 − 𝑥2
)

.
For an SN placed in outer corner sub-regions 𝐶𝑂1, 𝐶𝑂2, 𝐶𝑂3, and
𝐶𝑂4, the probability that a target is positioned at a point with
separation 𝑟 to the SNs location will also be equal due to the same
reason stated above. Consequently, the probability that the target
location will be sensed by an SN deployed in either of the outer
corner sub-region will also be equal.
8

Further, we average the target detection probability of an arbi-
trary SN over different sub-regions by incorporating BEs and SEs
to evaluate the expected probability of target detection by an
arbitrary SN deployed inside a RSR using Eq. (45)

𝐸
(

𝑃𝑑𝑒𝑡
)

= ∫

𝑤−𝑟𝑚𝑎𝑥

𝑟𝑚𝑎𝑥
∫

𝑙−𝑟𝑚𝑎𝑥

𝑟𝑚𝑎𝑥

(

𝑃 𝐼𝑑𝑒𝑡 (𝑟)
𝐴

)

𝑑𝑥 𝑑𝑦

+ 2∫

𝑤−𝑟𝑚𝑎𝑥

𝑟𝑚𝑎𝑥
∫

𝑟𝑚𝑎𝑥

0

(

𝑃𝐵1
𝑑𝑒𝑡 (𝑟)
𝐴

)

𝑑𝑥 𝑑𝑦

+ 2∫

𝑟𝑚𝑎𝑥

0 ∫

𝑙−𝑟𝑚𝑎𝑥

𝑟𝑚𝑎𝑥

(

𝑃𝐵2
𝑑𝑒𝑡 (𝑟)
𝐴

)

𝑑𝑥 𝑑𝑦

+ 4∫

𝑟𝑚𝑎𝑥
√

𝑟2𝑚𝑎𝑥−𝑥2
∫

𝑟𝑚𝑎𝑥

0

(

𝑃𝐶𝐼1𝑑𝑒𝑡 (𝑟)
𝐴

)

𝑑𝑥 𝑑𝑦

+ 4∫

√

𝑟2𝑚𝑎𝑥−𝑥2

𝑥 ∫

𝑟𝑚𝑎𝑥
√

2

0

⎛

⎜

⎜

⎝

𝑃𝐶𝑂1′𝑑𝑒𝑡 (𝑟)
𝐴

⎞

⎟

⎟

⎠

𝑑𝑥 𝑑𝑦

+ 4∫

𝑥

0 ∫

𝑟𝑚𝑎𝑥
√

2

0

⎛

⎜

⎜

⎝

𝑃𝐶𝑂1′′𝑑𝑒𝑡 (𝑟)
𝐴

⎞

⎟

⎟

⎠

𝑑𝑥 𝑑𝑦

+ 4∫

√

𝑟2𝑚𝑎𝑥−𝑥2

0 ∫

𝑟𝑚𝑎𝑥

𝑟𝑚𝑎𝑥
√

2

⎛

⎜

⎜

⎝

𝑃𝐶𝑂1′′𝑑𝑒𝑡 (𝑟)
𝐴

⎞

⎟

⎟

⎠

𝑑𝑥 𝑑𝑦

(45)

3.3. Network 𝑘-coverage

Some of the major applications of WMNs are forest fire detection,
monitoring of natural resource and border regions, enemy tracking,
battlefield surveillance and reconnaissance (Roy, Mazumdar, & Pamula,
2021). The deployment of WMNs in the above mentioned regions is
very expensive and cannot be modified after the initial deployment,
therefore, it is important to estimate their performance before their
actual deployment. The monitoring and surveillance performance of
WMNs can be measured in terms of network coverage provided by
the network (Boschiero, Giordani, Polese, & Zorzi, 2020; Chatterjee,
Ghosh, & Das, 2017; Yu, Wan, Cheng, & Yu, 2017). Since, the SNs
in a WMN may fail because of different reasons such as high winds,
temperature variations, hitting by wild animals, battery-drainage, and
several other environmental factors (Kaya, Keçeli, Catal, & Tekinerdo-
gan, 2020; Shikada, Sebe, Suyama, & Indriawati, 2020), which in turn
would deteriorate the network coverage. The impact of SNs failure on
network coverage can be eliminated by designing a robust network
against the SNs failure. A network is assumed to render 𝑘-coverage iff
each location inside the region is sensed by no less than 𝑘 different SNs.
Hence, we compute the 𝑘-coverage of the WMN for both the cases, i.e.,
with BEs only, and BEs plus SEs together. The probability that the target
would not be detected by any arbitrary SN deployed inside the RSR is
obtained as

𝑃𝑁𝐷 =
(

1 − 𝐸
(

𝑃𝑑𝑒𝑡
))𝑁 (46)

and the probability that the target would be sensed by an arbitrary
SN is given by

𝐶𝑁𝑒𝑡 = 1 − 𝑃𝑁𝐷 = 1 −
(

1 − 𝐸
(

𝑃𝑑𝑒𝑡
))𝑁 (47)

Further, the probability that the target location is sensed by 𝑘
different arbitrarily selected SNs from 𝑁 is:

𝑃𝑘 =
(

𝑁
𝑘

)

(

𝐸
(

𝑃𝑑𝑒𝑡
))𝑘 (1 − 𝐸

(

𝑃𝑑𝑒𝑡
))𝑁−𝑘 (48)

and, the probability that the random target position in the RSR
would be sensed by no less than 𝑘 distinct arbitrary SNs can be
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Table 1
Simulation parameters for k-barrier coverage probability.
Parameter Value (s)

RSR 𝑙 = 100 – 1900 m and 𝑤 = 35 – 1600 m
Maximum sensing range of SNs (𝑟𝑚𝑎𝑥) (10 − 600) m
Number of SNs (𝑁) 5 − 1500
Standard deviation of SEs (𝜎) 0 − 12𝑑𝐵
Value of required 𝑘 1 − 3
computed as

𝐶𝑘 = 1 −
𝑘−1
∑

𝑘=0
𝑃𝑘

= 1 −
𝑘−1
∑

𝑘=0

(

𝑁
𝑘

)

(

𝐸
(

𝑃𝑑𝑒𝑡
))𝑘 (1 − 𝐸

(

𝑃𝑑𝑒𝑡
))𝑁−𝑘

(49)

The 𝑘-coverage probability of a WMN spread in RSR incorporating
nly BEs, and BEs plus SEs concurrently can be obtained by substituting
qs. (38) and (45) respectively in Eq. (49).

.4. Simulation set-up

To obtain the simulation results, the entire RSR is split into many
imilar squares with an area of 0.15 m × 0.15 m. The detection avail-
bility of every square is computed considering the similar topology
n each round of iteration, and the square is presumed to be covered
y the WMN iff its centre is sensed by at least one arbitrary SN (see
able 1).

Finally, the network coverage metric is computed as the ratio
f squares covered to the total squares count. Also, the 𝑘-coverage
robability of the WMN is achieved by implementing algorithms in
ATLAB® 2018b. Each MCS result rendered is the average of 10000

terations.

. ML approach to predict network 𝒌-coverage

In this study, we employed supervised regression based ML ap-
roach, viz., GRNN. We have preferred explainable ML approach as
ompared to its black-box variant (Rudin, 2019).

.1. Generalised regression neural networks

The GRNN is a radial basis function network that works on the
rinciple of a standard statistical technique called kernel regression (Ci-
izoglu & Alp, 2006; Li, Guo, Li, & Sun, 2013). Donald F. Specht
ntroduced GRNN in 1991 for the nonlinear regression analysis of
ontinuous variables (Specht et al., 1991). GRNN has several features.
or instance, it does not need any iterative training method to estimate
random function between input and output vectors. It can estimate

he function directly from the training data. GRNN is much efficient
han any other iterative training network in terms of time complexity.
esides, GRNN has better performance for learning speed and estima-
ion capabilities. It converges to the optimal regression surface as the
ize of the training data set becomes vast. Furthermore, the evaluated
rror reaches zero with the increase in the size of the training set. GRNN
lso has acceptable prediction outcomes when the size of the training
ata is small.

GRNN is a technique to approximate the joint probability density
unction (pdf) of a vector random variable 𝑥 and a scalar random

variable 𝑦, denoted by 𝑓 (𝑥, 𝑦). The conditional expected value of 𝑦 given
𝑋 is provided by Eq. (50)

𝐸[𝑦|𝑋] =
∫ ∞
−∞ 𝑦𝑓 (𝑋, 𝑦)𝑑𝑦

∫ ∞
−∞ 𝑓 (𝑋, 𝑦)𝑑𝑦

(50)

where, 𝑋 is a given computed value of vector random variable 𝑥, the
9

alue of the pdf 𝑓 (𝑥, 𝑦) is estimated from the sample values of 𝑥 and
𝑦 when it is not available. Based on the sample values 𝑋𝑖 and 𝑌 𝑖 of
the random variables 𝑥 and 𝑦, the probability estimator 𝑓 (𝑋, 𝑌 ) can be
computed using Eq. (51)

𝑓 (𝑋, 𝑌 ) = 1
(2𝜋)(𝑝+1)∕2 𝜎(𝑝+1)

1
𝑛

×
𝑛
∑

𝑖=1
exp

[

−

(

𝑋 −𝑋𝑖)𝑇 (

𝑋 −𝑋𝑖)

2𝜎2

]

exp

[

−

(

𝑌 − 𝑌 𝑖
)2

2𝜎2

] (51)

where, 𝑝 represents the dimension of the vector variable 𝑥; 𝑛 is the
number of sample values; 𝜎 is the smoothing parameter indicating the
capability of the GRNN. Scalar function 𝐷2

𝑖 is given by Eq. (52)

𝐷2
𝑖 =

(

𝑋 −𝑋𝑖)𝑇 (

𝑋 −𝑋𝑖) (52)

Putting Eq. (51) in Eq. (50) and evaluating the required interactions,
we obtain Eq. (53) which can be applied directly to solve numerical
data.

𝑌 (𝑋) =

∑𝑛
𝑖=1 𝑌

𝑖 exp
(

−
𝐷2
𝑖

2𝜎2

)

∑𝑛
𝑖=1 exp

(

−
𝐷2
𝑖

2𝜎2

) (53)

Primarily, the GRNN is arranged in four layers, namely the input
layer, pattern layer, summation layer, and output layer (Niu, Wang,
Chen, & Liang, 2017) as depicted in Fig. 8. The function of each layer
is described below:

1. The input layer: The number of inputs in this layer is equal to
the number of variables under observation. In this layer, each
input variable has one neuron. These neurons standardises the
range of input variables by subtracting the median and diving
by the interquartile range. Then the output of each neuron in
the input layer is fed to the pattern layer.

2. The pattern layer: In this layer, a non-linear transformation
is employed on the values obtained from the input layer. The
transformation function of the 𝑖th neuron in the pattern layer is
given by Eq. (54)

𝑃𝑖 = exp

[

−
𝐷2
𝑖

2𝜎2

]

, 𝑖 = 1, 2, 3,… , 𝑛 (54)

3. The summation layer: This layer possesses two types of neu-
rons. The first neuron, denoted by 𝑆𝐴, computes the arithmetic
addition of all the outcomes of the pattern layer neurons. The
weight of connection for each neuron in the pattern layer to
this neuron is 1. The transfer function of this neuron is given
by Eq. (55)

𝑆𝐴 =
𝑛
∑

𝑖=1
𝑃𝑖 (55)

To create the additional neurons in the summation layer, de-
noted by 𝑆𝑁𝑗 , the outputs of every neuron in the pattern layer
were weighted and added. The following is the other neurons’
transfer function in the summation layer:

𝑆𝑁𝑗 =
𝑛
∑

𝑦𝑖𝑗𝑃𝑖𝑗 = 1, 2,… , 𝑘, (56)

𝑖=1
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where 𝑦𝑖𝑗 is the weight of the connection between the 𝑖𝑡ℎ pattern
layer neuron and the 𝑗𝑡ℎ summation layer neuron. In more detail,
𝑦𝑖𝑗 is the 𝑗𝑡ℎ element in the 𝑖𝑡ℎ output sample.

4. The output layer: In this layer, the value accumulated in the
numerator summation unit is divided by the denominator sum-
mation unit value, which is used as the predicted target value.
The output of each neuron is:

𝑦𝑗 =
𝑆𝑁𝑗
𝑆𝐴

; 𝑗 = 1, 2,… , 𝑘, (57)

where the 𝑗𝑡ℎ neuron’s output is 𝑦𝑗 .

The dimension of the complete datasets used is 136 × 7, the input
eatures’ dimensions are 136 × 6, and the output feature is 136 × 1.
o train the GRNN model, we divided the entire data into a 80:20
atio (Joseph, 2022; Singh, Amutha, Nagar, Sharma, & Lee, 2022a,
022b). We used 105 × 6 data for training the model and the remaining
o validate it. The number of neurons in the pattern layer usually equals
r more than the number of training datasets. Hence, we consider 105
eurons in the pattern layer. Unlike with back-propagation networks,
here are no training parameters like learning rate or momentum;
evertheless, a smoothing factor is used once the network has been
rained. How closely the network predicted values match with the data
n the training patterns depends on the smoothing factor. We observe
hat a unity smoothing factor converges the network faster than other
alues of this factor.

.2. Assessing the features importance and sensitivity

It is well-known that the performance of an ML approach can greatly
e influenced by the choice of features inputs. The relative importance
f identified features on the predicand is assessed by employing the
egression ensemble technique proposed in Singh, Kotiyal, et al. (2020),
ingh, Nagar, et al. (2021). In this study, the key input features selected
re length, breadth, SNs, sensing range, sigma, and required 𝑘 to predict
he 𝑘-coverage probability as the predictand. The relative importance
harts both for with/without BE are depicted in Fig. 9. It can be
bserved from Fig. 9(a) that in without BEs the relative importance
core of sensing range is highest (followed by length, breadth, required
, and nodes, respectively) whereas with BEs (Fig. 9(b)), the relative
mportance of sensing range is the highest (followed by length, required
, breadth and nodes). However, in both the cases, sigma gets the least
mportance.

Notwithstanding that feature importance just says us about the
elative importance of each feature based on the training datasets,
ut it does not convey any information on how the feature is related
o the predictand i.e., whether the feature has a positive or negative
mpact on the prediction (Singh, Gaurav, et al., 2021). To evaluate the
10
econd aspect, performed the sensitivity analysis of the features using
artial Dependence Plot (PDP) and Individual Conditional Expectation
ICE) curve by leveraging regression tree ensemble learning (Singh &
aurav, 2023; Singh et al., 2023). Figs. 10 and 11 show the results of

ensitivity analysis. Note that the PDP curve (shown in red) measures
he average effect of each feature by marginalising all other features. In
ontrast, ICE curves (shown in grey) dis-aggregates the average effect
nd presents the functional relationship at each instant.

It can be seen that the length, breadth, sigma, and required 𝑘 has
a negative and SNs and sensing range has a positive impact on the
predictand for both with and without BEs scenarios. The value of 𝑘-
overage probability decreases with increase in length, breadth, sigma,
nd required k, whereas it increases with increase in sensing range and
N’s count.

. Results

Here, we discuss the performance of GRNN in predicting the 𝑘-
overage probability. We plot a linear regression curve and the corre-
ponding residual plot for the two scenarios (i.e.,with and without BEs).

We assess the GRNN algorithm’s performance using three performance
metrics: bias, RMSE, and coefficient of correlation (R).

5.1. Without BEs

After obtaining the predicted 𝑘-coverage probability (with out BEs)
from the trained GRNN algorithm, we have compared its results with
the observed values obtained through MCS. To do this, we created a
linear regression line (Fig. 12) between the observed and anticipated
values. With R = 0.78 and RMSE = 0.15, we found that the results
match the observed values quite well. However, this model produces a
small positive bias of 0.02 which results in a slight overestimation of
few samples as illustrated in Fig. 12.

Further, to assess the appropriateness of the ML approach, we
performed and plotted the residual analysis curve between the pre-
dicted and observed values of 𝑘-coverage probability (Fig. 13). The
residual plot is randomly scattered without following any periodic
pattern indicating a good fit. The positive residual above the RMSE
dash-line represents an overestimation greater than the RMSE value.
Similarly, the negative residual value below the dash-line represents
an underestimation greater than the RMSE value. The positive bias
represents that the positive residual is more than the negative residual.

5.2. With BEs

In this sub-section, we assess the effectiveness of GRNN for with BEs

case. In doing so, we compare the predicted results of GRNN algorithm
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Fig. 9. Feature importance graph illustrating the relative importance of each features for (a) without BEs and (b) with BEs.
Fig. 10. Sensitivity analysis of each features using Partial Dependence Plot (PDP) (in red) and Individual Conditional Expectation (ICE) curve (in grey) for no BEs scenario.
with the simulated results obtained from MCS. We plot a regression line
between the GRNN predicted and simulated observed values (Fig. 14).
We observed that the data points lie along the regression line with
R = 0.78 and RMSE = 0.14 similar to the case of without BEs. In this
case also, we observed that the approach persist a small bias of 0.02
which leads to overestimation of few sample points as shown in Fig. 14.

Similar to the case of without BEs, the residuals in the residual
analysis curve (Fig. 15) does not follows any specific pattern and
hence represents a good fit line. Furthermore, the presence of positive
bias confirms that the total positive residual is greater than the total
negative residual.

6. Discussion

This study uses GRNN ML model to predict the 𝑘-coverage proba-
bility for two different scenarios in WSNs; with and without BEs. Our
results suggest that the performance of GRNN is nearly similar for both
11
these scenarios with slightly good performance (in terms of RMSE) for
with BEs scenario.

Further, to ensure fair evaluation, we also compare the outputs of
GRNN with other benchmark algorithms (Table 2). For this, we selected
bagging ensemble learning and boosting ensemble learning (Sagi &
Rokach, 2018). In doing so, we choose R, RMSE, bias and time com-
plexity as the performance metrics. We observed that GRNN approach
outperforms both the algorithms. Also, we observed no obvious dif-
ference in the time-complexity in with and without boundary effect
scenarios for each individual algorithms. GRNN emerges as most accu-
rate (lowest RMSE) and time efficient algorithm followed by bagging
ensemble learning and boosting ensemble learning in predicting the
𝑘-coverage probability.

Furthermore, we evaluate and compare the computational time
complexity of all the three ML algorithms with three different scenarios
of MCS. We calculate the computational time for SN 50, 100, and 150
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Fig. 11. Sensitivity analysis of each features using Partial Dependence Plot (PDP) (in red) and Individual Conditional Expectation (ICE) curve (in grey) for with BEs scenario.
Fig. 12. Comparison between the observed and predicted values of 𝑘-coverage probability without considering BEs. The grey band represents 95% confidence interval.
Table 2
Simulation parameters for 𝑘-barrier coverage probability.
Metrics Methods

GRNN Bragging Ensemble Learning Boosting Ensemble Learning

with BEs without BEs with BEs without BEs with BEs without BEs

R 0.78 0.78 0.63 0.59 0.67 0.51
RMSE 0.14 0.15 0.17 0.19 0.17 0.20
Bias 0.02 0.02 0.05 0.04 −0.04 0.01
Time (s) 0.71 0.76 1.25 1.23 1.00 1.05
by keeping all other parameters constant (𝑟𝑚𝑎𝑥 = 30 m, 𝜎 = 2 dB,
fadding factor, 𝛽 = 4) for 10e3 iterations in 100 m × 80 m. In
doing so, we observed that the GRNN algorithm is the most time-
efficient ML algorithm for predicting 𝑘-coverage probability. However
12
the differences in the computational time of all the ML algorithms are
not significant. Further, the difference in the time-complexity of all the
three ML algorithms becomes negligible when it is compared with the
time complexity involve in the simulations. Furthermore, we observed
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Fig. 13. Residual plot analysis of 𝑘-coverage probability without considering BEs. The dash-line in the figure is the RMSE.
Fig. 14. Comparison between the observed and predicted values of 𝑘-coverage probability with BEs. The grey band represents 95% confidence interval.
hat the time-complexity for the simulation scenario rises with increase
n the number of SNs (Fig. 16).

The limitation of the proposed study is that it is limited to an RSR
nly. This study can be generalised for any geometrical-shaped region
onsidering area as the feature instead of length and breadth separately.
owever, for an RSR, the 𝑘-coverage probability has independent
ependency on length and breadth (Nze et al., 2011) which was indeed
he motivation behind selecting length and breadth as separate features
n this study.

. Conclusion

In this study, we rendered and investigated a comprehensive ap-
13

roach to accurately estimate 𝑘-barrier coverage probability using ML
algorithms. We evaluated and compared the performance of three
different ML algorithms, namely GRNN, bagging ensemble learning and
boosting ensemble learning. We trained these ML model using length,
breadth, SNs, sensing range, sigma value, and required 𝑘 as potential
features. In doing so, we have shown that sensing range is a pivotal fea-
ture for predicting 𝑘-coverage probability. Further, GRNN outperforms
the other two algorithms in terms of accuracy and time complexity. This
is probably because the former has less number of hyperparameters
as compared to the other two algorithms which prevents GRNN from
getting trapped into local minima.

This study is a step towards predicting 𝑘-coverage probability using
various system parameters. Our first-order analysis can be used to cut
down the time requirements during and post network set-up.
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Fig. 15. Residual plot analysis of 𝑘-coverage probability with BEs. The dash-line in the figure is the RMSE.
Fig. 16. Computational time complexity comparison graph. The y-axis is in log-scale.
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