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PIML-SM: Physics-Informed Machine Learning to
Estimate Surface Soil Moisture From Multisensor

Satellite Images by Leveraging Swarm Intelligence
Abhilash Singh , Member, IEEE, and Kumar Gaurav , Member, IEEE

Abstract— We introduce a physics-informed machine learning
(PIML) algorithm based on a feed-forward neural network
(FFNN) to estimate surface soil moisture from limited in situ mea-
surements and Sentinel-1/2 satellite images on the alluvial fan of
the Kosi River by leveraging radar physics. We set up a learning
bias PIML by modifying the loss function of the FFNN by using
the improved integral equation model (I2EM). A particle swarm
optimization (PSO) algorithm is used to optimize the tuning
parameters of the PIML. The effectiveness of the proposed model
is compared with ten benchmark algorithms. The performance
of PIML model is superior among the benchmark algorithms,
achieving a correlation coefficient (R) of 0.94, a root mean
square error (RMSE = 0.019 m3/m3), and bias = −0.03 m3/m3.
We conclude that the PIML model can accurately estimate soil
moisture solely from satellite images, achieving higher spatial and
temporal resolutions, even with limited in situ observations. The
findings of this study can be applied in agriculture, hydrology,
flood management, and drought monitoring, particularly in data-
scarce regions.

Index Terms— Improved integral equation model (I2EM),
neural networks, physics-informed machine learning (PIML),
Sentinel-1/2, soil moisture, swarm intelligence.

I. INTRODUCTION

SOIL moisture is a key component in the hydrologi-
cal, energy, and carbon cycle that contributes to many

processes occurring at the land–atmosphere interface, such
as runoff, evapotranspiration, and vegetation growth [1]. Its
spatiotemporal variation mediates the weather and climate
variation leading to the growth and persistence of extreme
events such as heatwaves, droughts, and floods. Accurate
estimation of spatial and temporal variability of soil moisture
is essential for various applications in Earth and environmental
sciences [2]. The spatial distribution of soil moisture is gener-
ally influenced by the precipitation, evaporation, topography,
geology, and other environmental factors. The complex inter-
actions between these factors make it challenging to model
the spatiotemporal variation of soil moisture accurately.
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It is impractical to assess soil water dynamics using field
instruments at a regional or global scale. Remote sensing
offers an efficient way to monitor large areas of soil moisture,
overcoming the limitations of traditional methods. The two
most commonly used approaches for estimating surface soil
moisture are optical (i.e., shortwave and thermal radiation)
and microwave (active and passive) remote sensing [3]. The
underlying techniques for estimating soil moisture vary greatly
for both these techniques. Most microwave-based retrieval
algorithms work on the same premise, using dielectric prop-
erties of the material and how they affect reflected microwave
radiation. Optical remote sensing establishes a relationship
between soil moisture and image-derived parameters such
as surface reflectance, variations in vegetation indices, and
surface temperature. Regardless of the underlying techniques,
they rely on various assumptions and approximations.

Microwave remote sensing sensors can acquire images in
all weather conditions. The microwave pulses can penetrate
the soil surface, enabling an estimate of moisture along the
soil columns [4], [5], [6], [7], [8], [9], [10]. To simulate the
permittivity value of individual pixels of quad-polarized radar
images, various theoretical, empirical, and semi-empirical
models have been proposed [11], [12], [13], [14], [15], [16],
[17]. The pixels’ permittivity values are then used as an input
in the universal Topp’s model to obtain the soil moisture [18].
Modifications have been proposed to use these models for
dual-polarized radar images [19], [20], [21], [22], [23], [24].
However, the performance of the modified models has been
observed to be sensitive to the climatic conditions. For exam-
ple, Singh et al. [24], [25] noticed that the performance of
the modified Dubois model to estimate soil moisture from
Sentinel-1 images is different in the semi-arid and tropical
humid climatic settings. This indicates that the applicability of
modified backscattering models cannot be generalized across
areas with different climactic conditions.

The limitation associated with the use of backscattering
models triggers use of the data-driven model for estimating
soil moisture [26], [27]. According to the Web of Sci-
ence (WoS) database, the number of publications on soil
moisture using machine learning algorithms has increased
exponentially in the last few years (Fig. 1). Most of these
publications mainly use random forest (RF), support vector
regression (SVR), and artificial neural networks (ANNs) to
predict soil moisture by using different input features derived
from optical and microwave satellite images. For instance,
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Fig. 1. Bar graph shows the number of publications on machine learning
for soil moisture in the last ten years. According to the WoS database, a total
of 1218 publications (research articles 1150; review articles 64, and others 4)
have been published from 2013 to April 20, 2024. The maximum publications
are from China, followed by the USA, India, Germany, and Canada. The
majority of these publications contribute to sustainable development goals
(SDGs) 13, 6, 15, 2, and 11.

Hajdu et al. [28] used the RF algorithm for predicting
soil moisture using vertical–vertical (VV), vertical–horizontal
(VH), and incidence angle information from Sentinel-1 in
New Zealand. They reported a correlation coefficient of
0.93 and a root mean square error (RMSE) of 3%. Santi et al.
[29] applied an ANN to develop an efficient methodology
using horizontal–horizontal (HH), horizontal–vertical (HV),
VV, and compact polarimetry information in Canada. They
found that the model performs relatively well with R ranging
from 0.70 to 0.90 and the RMSE ranges from 3% to 7%.
Araya et al. [30] used unmanned aerial vehicle (UAV)-derived
optical features (green, red, and NIR) to train five different
machine learning algorithms [ANN, RF, SVR, relevance vector
regression (RVR), and boosted regression trees (BRTs)] to
estimate soil moisture. They concluded that BRT outperforms
all the other algorithms with R = 0.84 and mean absolute
error (MAE = 3.78%). Senyurek et al. [31] used the NASA’s
cyclone GNSS (CYGNSS) and MODIS-derived features [veg-
etation water content (VWC), normalized difference vegetation
index (NDVI), incidence angle, surface elevation, and slope]
to train three machine learning models (ANNs, RF, and SVR).
They reported that RF outperforms the ANN and SVR with
R = 0.90 and RMSE = 0.05 cm3/cm3.

Adab et al. [32] used different bands [land surface tempera-
ture (LST), blue, green, red, NIR, SWIR1, and SWIR2] of the
Landsat-8 satellite to train the ANN, RF, SVR, and elastic
net (EN) regression algorithms to estimate soil moisture.
They reported that RF outperforms all the other algorithms
with a Nash–Sutcliffe (NS) efficiency of 0.73. Cui et al.
[33] applied LST and NDVI from MODIS and topographic
information (surface elevation, latitude, and longitude) to train
the generalized regression neural network (GRNN) model

Fig. 2. Tradeoff between model interpretability and data requirements for
black-box, PIML, and white-box models in soil moisture estimation.

using in situ measured surface soil moisture in the Tibetan
Plateau. They reported RMSE = 0.069 cm3/cm3 and bias =

0.003 cm3/cm3. Ayehu [34] considered VV, VH, and nor-
malized difference water index (NDWI) to train the ANN
and a linear regression model for soil moisture prediction in
Ethiopia. They reported that the ANN performs best with R =

0.73, RMSE = 0.035 cm3/cm3, and bias = −0.024 cm3/cm3.
Chaudhary et al. [35] used VV and VH polarized images of
Sentinel-1 to train nine different machine learning algorithms
[ANN, RF, SVR, Wang and Mendel’s (WM), radial basis
function (RBF), subtractive clustering (SBC), hybrid fuzzy
interference system (HyFIS), and adaptive neuro-fuzzy infer-
ence system (ANFIS)] to estimate soil moisture. They reported
that the SBC model outperforms all other models with R =

0.64, RMSE = 0.075 m3/m3, and bias = −0.009 m3/m3.
Recently, Babaeian et al. [36] used near-infrared transformed
reflectance (NTR) and NDVI information from UAV to train an
automated machine learning (AutoML) model for predicting
soil moisture in USA. They reported NS value of >0.9 and
RMSE = 0.04 cm3/cm3. More recently, Singh et al. [25] used
VV, VH, surface elevation, incidence angle, NDVI, latitude,
and longitude information from Sentinel-1/2 and shuttle radar
topography mission (SRTM) to train ANN model for soil
moisture prediction. They reported R = 0.85 and RMSE =

0.05 m3/m3. The aforementioned studies primarily employ
conventional standalone data-driven models for surface soil
moisture prediction.

Regardless of high accuracy and relentless success in
various scientific fields, including hydrology, the use of a
data-driven model is often criticized due to the lack of
physical understanding and explainability. The quality and
quantity of the input features and the response variable
largely govern any data-driven model’s performance. Such
models require a large number of input variables to predict
the response variable accurately [37], [38], [39]. To over-
come this problem, researchers have proposed theory-guided
data science (TGDS) and physics-informed machine learning
(PIML) algorithms [40], [41]. These algorithms minimize the
uncertainties associated with the input features and increase
the interpretability of the model. A critical investigation
into the tradeoff between model interpretability and data
requirements for training black-box and physics-informed
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machine learning (PIML) models is paramount, especially
for soil moisture prediction and its wide-ranging applications
(Fig. 2).

The PIML models can be categorized as observational,
inductive, and learning bias [41]. In observational bias PIML,
synthetically generated features and response variables are
used to train the machine learning model. The synthetic data
are usually generated from simple physics rules, statistical
models, or simulation techniques [42], [43], [44]. In the
inductive bias PIML, prior assumptions are introduced into
the model architecture so that the prediction satisfies the
set of physical laws. This type of PIML has been applied
in limited applications such as rotation, translation, or other
symmetrical applications. The learning bias PIML uses gov-
erning physics to minimize the loss function of the machine
learning model. Observational and learning bias PIML mod-
els are the most commonly used models. Numerous studies
have been undertaken to investigate the potential of PIML
in diverse application domains, such as defect detection and
diagnosis from cardiac magnetic resonance imaging [45], [46].
For instance, Roy and Guha [47] proposed a learning bias
PIML model for the solution of elastoplastic solid mechanics.
They combined the residual of the governing partial differ-
ential equation (PDE), flow rules, consistency constraints,
constitutive relations, and numerous boundary conditions to
construct a multiobjective loss function. This study uses a
learning bias PIML model by leveraging feed-forward neu-
ral networks (FFNNs) and a theoretical radar backscattering
model (I2EM) to predict surface soil moisture on the Kosi
Fan in the Himalayan Foreland from satellite images. Finally,
we have coupled PIML with swarm intelligence for the
effective optimization of the model parameters. To the best
of our knowledge, PIML and swarm intelligence have not
been used for soil moisture modeling. Leveraging the proposed
framework, we sought to obtain empirical answers to the
following research questions.

1) Can synthetic aperture radar (SAR) backscattering
physics principles be incorporated into a black-box
machine learning model using swarm intelligence to
estimate moisture?

2) To what extent PIML models can improve the accuracy
of satellite-derived soil moisture estimates compared to
traditional methods?

3) Are there any tradeoffs between the interpretability of
a machine learning model and the number of input
variables used for training the model?

This manuscript is divided into four key sections. Section II
details the input satellite and in situ observations used. It also
discusses the feature engineering techniques employed to
prepare the data for model training. Section III focuses on
the development and optimization of the model used for
analysis. It describes the model architecture, training process,
and optimization techniques employed to achieve optimal
performance. Section IV presents the key findings of the study.
It discusses the model’s performance, analyzes the results,
and interprets their significance in the context of the research
question. Section V summarizes the main findings of the

TABLE I
SATELLITE IMAGES USED IN THIS STUDY

research, reiterates the study’s contributions, and discusses
potential future research directions.

II. SATELLITE IMAGES AND IN SITU OBSERVATIONS

We utilized Sentinel-1/2 images, along with the SRTM
DEM, to construct a PIML model for the prediction of
surface soil moisture (refer to Table I). Sentinel-1 (microwave)
and Sentinel-2 (optical) are satellites for Earth observation
under the Copernicus program, a collaborative effort of the
European Union (EU) and the European Space Agency (ESA).
They grant free and open data access through the Coper-
nicus Open Access Hub (https://scihub.copernicus.eu/). The
Sentinel-1A/B (launched in 2014 and 2016, respectively) satel-
lites carry a C-band SAR instrument, operating at a frequency
of 5.405 GHz. Sentinel-1 satellites acquire dual-polarized
SAR images (like VV + VH or HH + HV). HH + HV
polarization is typically used for polar and sea–ice regions.
For the remaining regions, Sentinel-1 images are available
in VV + VH polarization with a spatial resolution of 10 ×

10 m and a swath width of 250 m. We used ground range
detected (GRD) data with VV + VH polarization for our
study. These raw images were processed using the sentinel
application platform (SNAP) version 8.0. The processing steps
includes radiometric correction to calibrate the pixel values,
multilooking to reduce speckle noise (by averaging groups of
pixels), speckle noise filtering with a refined Lee filter for
further noise reduction, and terrain correction to account for
topographic distortions. The final processed backscatter image
has a resolution of 60 m × 60 m.

We also used Sentinel-2 (Level-2A) images. These images
acquire data in 13 spectral bands with varying spatial res-
olutions ranging from 10 to 60 m. When considering both
Sentinel-2A and Sentinel-2B satellites, the revisit time is five
days (ten days for each individual satellite). We used the red
(Band 4) and near-infrared (Band 8) bands to compute NDVI.

We downloaded the SRTM digital elevation model from the
USGS EarthExplorer website (https://earthexplorer.usgs.gov/).
Publicly available SRTM DEM data comes in three versions:
nonvoid-filled, void-filled, and global. All versions have a
spatial resolution of 30 m × 30 m (i.e., 1 × 1 arcsec).
To ensure consistent spatial alignment and analysis, all data
products were resampled to a common grid of 60 × 60 m using
the nearest neighbor resampling technique. Following this pre-
processing step, we extracted features relevant to soil moisture
prediction. These features include backscatter coefficients (VH
and VV polarizations) from Sentinel-1, the incidence angle
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Fig. 3. (a) Schematic representation of the random sampling strategy of grid cells for the in situ measurements. The values of x and y for Kosi Fan are
(24 km, 4 km). (b) Calibrated TDR for in situ moisture measurements and handheld GPS used in this study. (c) Mechanical pin-profilometer developed
in-house for surface roughness measurements.

(also from Sentinel-1), and the NDVI derived from Sentinel-
2. Elevation, longitude, and latitude information were obtained
from the SRTM DEM. Given the high sensitivity of soil
moisture detection to VH and VV polarizations, we gener-
ated two synthetic features for improved characterization; the
VH/VV ratio and VH-VV difference using a linear data fusion
approach. In total, nine features were derived from the satellite
images and DEM data to serve as input variables for model
training, along with the in situ measurements.

We conducted a field campaign in December (from 11th

to 20th) 2019 on the Kosi Fan-in the Himalayan Foreland to
measure the soil moisture and surface roughness. We used a
calibrated time-domain reflectometry (TDR) and a mechanical
pin-profilometer to measure surface soil moisture and rough-
ness at 78 locations using a random grid sampling approach
as illustrated in Fig. 3. The specifics of the study area, field
measurements, and in situ data can be found in our previous
works [48], [25], [37].

III. MODEL DEVELOPMENT AND OPTIMIZATION

The initial step in developing a PIML model is the selection
of a network architecture. There are a number of different
network architectures that can be used for PIML, including
convolutional neural networks, recurrent neural networks, and
FFNNs. The choice of a network architecture will depend
on the specific problem that is being solved. For instance,
if the problem involves image processing, then a convolutional
neural network may be a good choice. If a problem involves
sequential data, then a recurrent neural network may be a good
choice. On the other hand, if the problem involves nonse-
quential data, then an FFNN may be the best choice. In this
study, we develop a learning bias PIML by incorporating the
physics in the loss function of a 9 (inputs):3 (one hidden layer
with three neurons):1 (output) fully connected FFNNs (Fig. 4).
The input layer in this architecture is followed by a linear
activation function (i.e., purelin), whereas the hidden and the
output layer follow a logistic sigmoid activation function (i.e.,
logsig). The modification in the model involves matching
the theoretically computed backscatter (VVI2EM) with the
satellite-derived backscatter (VV) along with the conventional

term (1)

Loss function =
1
n

n∑
i=1

(SMobserved − SMPredicted)︸ ︷︷ ︸
Conventional term

+
1
n

n∑
i=1

(VVI2EM − VV)︸ ︷︷ ︸
Physics term

(1)

where n is the number of observations, SMobserved is the in situ
soil moisture, and SMPredicted is the predicted soil moisture.
The primary motivation behind incorporating VV into the
loss function is its high sensitivity to surface soil moisture,
as demonstrated in previous studies [37], [49], [50]. It is
important to note that the conventional component of the
loss function provides robustness against uncertainties in the
in situ observations by directly including the SMobserved term.
On the other hand, the modified component (physics term)
is designed to counteract any uncertainties (noise) present in
satellite images, specifically VV. The presence of uncertainties,
whether in the in situ measurements or satellite images, can
significantly impact the model’s performance and hinder the
convergence of the optimization process.

The time complexity of PIML is influenced by various
factors, including the size of the dataset, the physics model’s
complexity, and the neural network architecture selection.
As the size of the dataset increases, the neural network requires
more training data, which in turn prolongs the model-tuning
process. In addition, when the physics model is more intricate,
it becomes more challenging for the neural network to learn,
resulting in longer training times. The choice of neural network
architecture also plays a role in the time complexity of PIML.
More sophisticated architectures may necessitate extended
training durations, but they have the potential to achieve higher
levels of accuracy.

To simulate the co-polarized radar backscatter values
(VVI2EM), we used the improved integral equation model
(I2EM) [51], which relates the backscattering coefficient to
target and sensor properties such as surface roughness, soil
dielectric, incidence angle, and wavelength [52], [53]. In this
study, we focus solely on the co-polarized backscattering
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Fig. 4. Learning bias PIML architecture consists of nine inputs, a single hidden layer with three neurons. The model parameters are optimized using the
PSO algorithm.

coefficient (VVI2EM) according to

VVI2EM =
k2

4π
e−2k2s2 cos2 θ

+∞∑
n=1

∣∣I n
vv

∣∣2 W (n)
ft (2k sin θ, 0)

n!
(2)

where k represents the wavenumber (k = (2π/λ)), λ is the
wavelength, s is the surface roughness (rms height), θ is the
incidence angle, and W (n)

ft is the Fourier transform of surface
autocorrelation function ζ(x, y). I n

vv is given as

I n
vv = (2ks cos θ) fvve(−k2s2 cosθ )

+ (ks cos θ)n Fvv (3)

where fvv is given by

fvv =
29v

cos θ
(4)

where the vertically polarized Fresnel reflection coefficient is
given by

9v =
ϵ cos θ −

√
ϵ − sin2 θ

ϵ cos θ +

√
ϵ − sin2 θ

(5)

where ϵ represents the ground dielectric constant. Fvv and W (n)
ft

are given by

Fvv =
2 sin2 θ

cos θ

[(
1 −

ϵ cos2 θ

ϵ − sin2 θ

)
(1 − 9v)

2

+

(
1 −

1
ϵ

)
(1 + 9v)

2
]

(6)

W (n)
ft (a, b) =

1
2π

∫ ∫
ζ n(x, y)e−i(by+ax)dxdy (7)

where ζ(x, y) can be either exponential [(8)] or Gaussian [(9)]
depending upon the roughness magnitude

ζ(x) = e−

(
|x |

η

)
(8)

ζ(x) = e−

(
x
η

)2

(9)

where η is the correlation length. The I2EM model applies to
a wide range of surface roughness from smooth to rough. The
validity range is given by

ks ≤ 3 (10)(
(ks cos θ)2
√

0.46 kη
exp

(
−

√
0.92 kη(1 − sin θ)

))
≪ 1. (11)
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Fig. 5. Spatial distribution analysis using various sets of training and testing data on the Kosi Fan. For illustration, we have randomly displayed only ten
(a)–(j) scenarios out of 30.

The in situ measured surface roughness parameters satisfy
these constraints, thereby enabling the use of I2EM in the
loss function.

Once we developed the learning bias PIML model, we used
co- and cross-polarized backscatter images (VV and VH),
incidence angle, VH/VV, and VH-VV from Sentinel-1 images,
NDVI from Sentinel-2, latitude, longitude, and topographic
information from the SRTM DEM as input features. To bring
all the input features to a common level, we applied z-
score scaling. Using 60% of the standardized input features
and in situ measurements, we train the learning bias PIML
model. During the training process, we optimize the values of
model parameters (i.e., weights and biases) by minimizing (1)
using particle swarm optimization (PSO) algorithm (swarm
size = 9 and maximum iteration = 100). PSO, introduced
by Kennedy and Eberhart [54], is a swarm intelligence-based
optimization technique that offers several advantages, as it
requires relatively few user-defined parameters compared to
other optimization algorithms. The core optimization process
relies on iterative updates governed by a set of equations,
reducing computational complexity. It has demonstrated effec-
tiveness in optimizing a wide range of theoretical and practical
problems, as shown in previous studies [55], [56]. In PSO,
a population of particles (or swarms), representing potential
solutions, iteratively update their positions and velocities based
on their own best solutions and the best solution found by the

entire population in the following equations:

vt+1
in = vt

in + χ1 · ρ1 ·
(
Particlet

best − x t
in

)
+ χ2 · ρ2 ·

(
Globaltbest − x t

in

)
(12)

x t+1
in = x t

in + vt+1
in . (13)

Each particle represents a possible solution, and it keeps
track of two things: its own best solution found so far, called
the “personal best” (represented by Particlebest) and the best
solution found by the entire swarm, called the “global best”
(represented by Globalbest). The particles move around the
search space, trying to improve their positions. Each particle
considers two influences when deciding where to move next.
First, its own experience and how close the particle is to its
own best solution found so far. This is called the “cognitive
component” (represented by χ1). Second, the swarm’s knowl-
edge, that is, how close is the particle to the best solution found
by the entire swarm so far? This is called the “social com-
ponent” (represented by χ2). To balance these influences, the
particle uses random numbers between 0 and 1 (represented by
ρ1 and ρ2). These random numbers add a bit of randomness to
the movement, helping the particles explore new areas of the
search space. Equations (12) and (13) describe how a particle’s
velocity and position are updated based on these influences.
The same is illustrated in Fig. 4, where the particles move
around the search space, constantly updating their position and
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Fig. 6. Step-wise flowchart illustrating the soil moisture estimation through the PIML model.

speed. Two main factors influence this movement. The first is
their own “memory,” which pulls them closer to their personal
best solution. The second is the “swarm’s influence,” which
attracts them toward the best solution found by the whole
group. Both these influences are visualized as lines parallel to
the movement toward the personal and global best positions,
respectively. Over time, the particles keep adjusting their
position and speed based on these influences. This iterative
process helps them get closer and closer to the ideal solution
(Theoreticaloptima) like a swarm gradually converging toward
a food source. In a nutshell, the particles learn from their
own experiences and the best solution found by the whole
group. They use this knowledge to explore the search space
and hopefully find the optimal solution to the problem.

Furthermore, assessing the uncertainty of the proposed
model is crucial for making more informed decisions,
as emphasized in previous studies [37], [57], [58], [59].
We performed an uncertainty quantification (spatial distribu-
tion analysis) by varying the input training data. We generated
30 independent training datasets by varying the random seed
in the random generator and computed the corresponding
variation in the model output (Fig. 5). For a comprehensive
understanding of our methodology, we present a step-by-step
flowchart in Fig. 6.

IV. RESULTS AND DISCUSSION

A. Model Performance

To evaluate the prediction accuracy of the proposed learning
bias PIML algorithm, we assessed its performance on an
unseen dataset, which comprised 40% of the total data reserved
for testing. A linear fit between the predicted and in situ
observations was plotted, revealing that the predicted soil
moisture closely aligns with the in situ values; R = 0.94,
RMSE = 0.02 m3/m3, and bias = −0.03 m3/m3 [Fig. 7(a)].

All the observations are within the 95% confidence interval.
Furthermore, we perform an error histogram analysis using ten
bins to understand the model error distribution (i.e., error =

predicted−observed). We plot the error involved during the
training and testing phases in a stacked manner [Fig. 7(b)].
The vertical orange line denotes the zero-error line. Regions
to the left and right of this line correspond to underestimation
(negative errors) and overestimation (positive errors) zones,
respectively. The resulting error histogram approximates a
Gaussian distribution with a right-skew. The peak of the
histogram is located near the zero-error line, indicating a
strong model fit. The presence of positive errors represents
overestimation. This is probably due to the numerous water-
logging patches on the Kosi Fan [60]. This results high
soil moisture levels on the Kosi Fan, especially following
precipitation events, leading to rapid surface saturation. The
model tends to overestimate soil moisture in these areas, likely
due to this inherent variability in surface moisture retention
and the region’s fast response to rainfall [61]. In addition,
incorporating radar physics in the model, specifically through
Sentinel-1 backscatter signals, may contribute to the over-
estimation. In wet surface conditions and areas with dense
vegetation, which is common in the Kosi Fan, the backscatter
signals can overrespond, capturing the waterlogged surface and
vegetation moisture. This can lead to an amplified response in
the predicted soil moisture values. We also plot the residuals
between the fit and the in situ soil moisture [Fig. 7(c)].
Most residuals lie within the ±RMSE line and are stochastic,
suggesting a good-fit model. Furthermore, we found an overall
steady response for the uncertainty in the output corresponding
to the variation in the input training datasets. We observed an
average variation of 0.92 ± 0.01 in R, 0.03 ± 0.01 in RMSE,
and −0.03 ± 0.01 in bias (Table II). Finally, we used the
trained learning PIML to generate the spatial soil moisture
map of the Kosi Fan (Fig. 8). It has a spatial resolution of
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Fig. 7. (a) Linear regression plot showcasing the accuracy and correlation between predicted soil moisture and in situ measurements, with the gray shaded
area representing the 95% confidence interval. (b) Error histogram analysis using ten bins. (c) Residual analysis, with the dashed line marking the testing ±

RMSE.

60 m × 60 m. We observe high soil moisture near the western
margin of the Kosi Fan, which is due to the topography of the
region. The Kosi River flows near the western margin of the
fan, contributing to the increased soil moisture. This area is
also characterized by shallow groundwater, which explains the
high moisture levels. The alluvial fans usually have a relatively
high elevation at the fan axis and a lower elevation toward
the margins. Drainage networks radiate from the central axis

toward the fan margins, impacting soil moisture distribution.
The proximity of the western margin to the Kosi River
increases moisture content due to surface water and shallow
groundwater interaction.

B. Benchmark Comparison

We evaluated the performance of the learning bias PIML
algorithm against ten different machine learning models:
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TABLE II
COMPARISON OF ACCURACY ACROSS VARIOUS SCENARIOS IN THE SPATIAL DISTRIBUTION ANALYSIS

Fig. 8. Spatial soil moisture map derived from learning-PIML. The
transparent pixel represents the invalid regions.

ANN, GRNN, binary decision tree (BDT), radial basis neu-
ral networks (RBNs), exact-RBN (ERBN), Gaussian process
regression (GPR), SVR, RF, ensemble learning (EL) boosting,
and AutoML. These benchmark algorithms are selected based
on the bibliometric analysis, which selects the frequently
used algorithms for soil moisture estimation. We use R,
RMSE, bias, and refined index of agreement (dr ) [62] as the
performance metrics to evaluate and compare the performance
of the benchmark algorithms in the following equations:

R =

√
1 −

ESSE

ESST
(14)

ESSE =

∑
(yobs − ypred)

2 (15)

ESST =

∑
(yobs − ȳobs)

2 (16)

RMSE =

√
1
n

∑
(ypred − yobs)2 (17)

Bias =

∑
(ypred − yobs)

n
(18)

dr =


1 −

∑n
i=1

∣∣ypred − yobs
∣∣

c ·
∑n

i=1|yobs − yobs|
, if ω≤c ·

n∑
i=1

|yobs − yobs|

c ·
∑n

i=1|yobs − yobs|∑n
i=1

∣∣ypred − yobs
∣∣ − 1, if ω>c ·

n∑
i=1

|yobs − yobs|

ω =

n∑
i=1

∣∣ypred − yobs
∣∣ (19)

where ESSE and ESST represent the sum of squares of errors
and squares of the total, respectively. ypred and yobs represent
the predicted and observed response variables, respectively.
n is the total number of observations. Of these performance
metrics, the R-value ranges from 0 to 1, with a higher value
being preferable. RMSE ranges from 0 to ∞, where a lower
value is considered better. The value bias ranges from −∞ to
+∞, and a lower value is desirable. The value of dr ranges
from −1 to 1, and a higher value is desirable.

We apply these benchmark algorithms to the same datasets
and evaluate their performance for comparison (Table III).
Our analysis reveals that the learning bias PIML significantly
outperforms all benchmark algorithms in terms of accuracy
with R = 0.94, RMSE = 0.02, bias = −0.03, and dr = 0.86.

C. Comparison With Previous Studies

We evaluate the accuracy of our proposed model by com-
paring it with leading studies that employ machine learning
and remote sensing images for surface soil moisture prediction
(Table IV). Most of these studies employed the RF and ANN to
develop the predictive model [28], [29], [31], [32], [34], [63].
They use the in situ measured soil moisture in synergy with
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TABLE III
COMPARISON WITH TEN BENCHMARK ALGORITHMS

TABLE IV
COMPARISON WITH RECENT CUTTING-EDGE STUDIES IN SURFACE SOIL MOISTURE PREDICTION

USING REMOTE SENSING AND MACHINE LEARNING TECHNIQUES

Fig. 9. Climatic zone classification of the Kosi and Bhopal study sites
(Sources: ICAR-CRIDA).

features extracted from the optical and microwave imagery to
train the machine learning model. We found that the PIML
outperforms all the recent studies that use satellite images as
the input features. A combination of optical and microwave
input features often results in the optimal result. Studies
using UAV images show better accuracy than the satellite
products [30], [63].

D. Performance Over Different Study Areas

We have tested the performance of the proposed PIML-SM
model over a different study area with distinct climatic con-
ditions to further evaluate its robustness. We selected Bhopal,
a semi-arid region, which stands in contrast to Kosi, a humid
subtropical area (Fig. 9). This allowed us to assess the model’s
generalizability across diverse climatic zones. Using in situ
soil moisture observations from Bhopal region, as reported
by Singh et al. [24], we trained the model and validated its
performance on unseen testing datasets. The model demon-
strated excellent accuracy, achieving the R-value of 0.97 and
an RMSE of 0.01 m3/m3 (Fig. 10). These results highlight the
model’s ability to generalize effectively across regions with
different climatic conditions, further strengthening its applica-
bility for soil moisture estimation in diverse environments.

Fig. 10. Linear regression plot demonstrating the performance and alignment
of the predicted soil moisture values with in situ measurements at the Bhopal
site. The gray shaded region indicates the 95% confidence interval.

E. Model Interpretability, and Comparison With Black-Box
Models

SAR backscatters exhibit high sensitivity to surface soil
attributes, particularly soil moisture and roughness. This
sensitivity varies depending on the polarization used. Due
to the high sensitivity of VV toward soil moisture when
compared to other available polarization, we consider the
physics of the VV backscattering in the loss function to
develop the PIML [64]. Moreover, VV is more sensitive to
estimating surface soil moisture at bare soil as compared
to VH [65]. In contrast, HH and HV are more sensitive to
the surface roughness [66]. However, the sensitivity of the
radar backscatter toward the soil attributes decreases with
increasing vegetation. To address this limitation and incorpo-
rate the impact of vegetation, we introduce the NDVI as an
input feature. NDVI allows the model to account for varying
vegetation levels. Furthermore, incorporating the theoretically
derived VV backscatter coefficient (VVI2EM) alongside the
satellite-derived VV measurement provides an additional layer
of resilience against noise inherent in satellite imagery, such
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as speckle noise. While preprocessing can reduce speckle,
it cannot eliminate it [67]. Therefore, incorporating the satellite
VV component acts as a shield against this noise.

As demonstrated by Singh and Gaurav [37], training a deep
learning model often requires a substantial amount of data.
Their fully connected feed-forward neural network, utilizing
the same nine input features and 224 in situ observations
(collected during field campaigns in 2019 and 2022) as the
response variable for the Kosi Fan, achieved a testing accuracy
of R = 0.80 and RMSE = 0.04 m3/m3. In contrast, this study
proposes a PIML model that effectively leverages physical
knowledge to learn from smaller datasets (trained on 78 in situ
sites). This enables the PIML model to achieve competi-
tive performance in soil moisture prediction (R = 0.94 and
RMSE = 0.02). This advantage is particularly valuable when
ground-truth data on soil moisture is limited or expensive to
acquire. Furthermore, black-box models lack generalizability
when applied to regional or global scales, particularly when
encountering data outside their training range. In such sce-
narios with varying weather conditions or soil types, PIML
models excel due to their reliance on established physical
principles that hold across diverse contexts. This is crucial
for robust predictions. In addition, black-box models can
become entangled in spurious correlations, potentially leading
to physically inconsistent predictions. For instance, a black-
box model might correlate a specific Sentinel-1 band with high
soil moisture. However, incorporating physics might reveal
that this band is sensitive to surface roughness, a factor that can
be high in both dry and wet conditions. This knowledge, when
integrated into the model, can refine predictions significantly.

In conclusion, incorporating physical knowledge into
machine learning models for soil moisture prediction fosters
interpretable, generalizable, and physically consistent results,
particularly when data scarcity is a challenge.

V. CONCLUSION

This study demonstrates that the data-driven models
empowered by underlying physical principles can significantly
enhance soil moisture prediction accuracy. We propose a
learning bias PIML model for surface soil moisture predic-
tion on the Kosi Fan. By incorporating a physics-aware loss
function, the model achieves a 50% reduction in prediction
error compared to the black-box model. Notably, this is accom-
plished with a 65% reduction in required data, highlighting the
efficiency of the PIML approach. This translates to accurate
soil moisture estimations from optical and microwave satellite
images, achieving a substantial improvement in correlation
(15%) compared to black-box models.

This study marks a step forward in improving the accuracy
of soil moisture prediction with a limited number of training
samples. The spatial distribution analysis of our model reveals
its robustness in predicting soil moisture on the Kosi Fan.
To further test its generalizability, we applied the model to
the Bhopal site, which has a different climatic condition,
and achieved acceptable accuracy, demonstrating the model’s
potential adaptability. While the PIML model may not be
directly transferable to other regions without adjustment, these

results suggest that the model can be effectively adapted to dif-
ferent geographical areas through transfer learning techniques,
using the current model as a source domain and its optimized
parameters as initial values for new regions.

Moving forward, this methodology could be applied to
high-resolution images captured by UAVs. This would allow
for monitoring soil moisture variability across both space
and time. Such insights would be invaluable for agricultural
productivity management, drought monitoring, and various
other applications in Earth sciences.
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