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A B S T R A C T

Wireless Sensor Networks (WSNs) is a promising technology with enormous applications in almost every walk
of life. One of the crucial applications of WSNs is intrusion detection and surveillance at border areas and in
the defence establishments. The border areas are stretched over hundreds to thousands of miles, hence, it is
not possible to patrol the entire border region. As a result, an enemy may enter from any point absence of
surveillance and cause the loss of lives or destroy the military establishments. WSNs can be a feasible solution
for the problem of intrusion detection and surveillance at the border areas. Detection of an enemy at the border
areas and nearby critical areas such as military cantonments is a time-sensitive task as a delay of a few seconds
may have disastrous consequences. Therefore, it becomes imperative to design systems that can identify and
detect the enemy as soon as it comes within the range of the deployed system. In this paper, we have proposed
a deep learning architecture based on a fully connected feed-forward Artificial Neural Network (ANN) for the
accurate prediction of the number of 𝑘-barriers for fast intrusion detection and prevention. We have trained
and evaluated the feed-forward ANN model using four potential features, namely area of the circular region,
sensing range of sensors, transmission range of sensors, and number of sensor for Gaussian and uniform sensor
distribution. These features are extracted through Monte Carlo simulation. In doing so, we found that the
model accurately predicts the number of 𝑘-barriers for both Gaussian and uniform sensor distribution with
correlation coefficient (R = 0.78) and Root Mean Square Error (RMSE = 41.15) for the former and R = 0.79
and RMSE = 48.36 for the latter. Further, the proposed approach outperforms the other benchmark algorithms
in terms of accuracy and computational time complexity.
1. Introduction

The unquenchable thirst of people for political and military power
is compelling them to extend their boundaries and grab other people’s
natural resources. In order to achieve this goal, they may try different
techniques such as gaining information about the military establish-
ments, the number of military personnel at a given place, regions of
natural resources, and the vulnerabilities of authorities that they can
exploit. In addition, illegal immigration, smuggling of drugs, and other
banned commodities across the boundaries are immediate concerns
that must be dealt with immediately. Therefore, it is crucial to identify
an intruder or an unauthorised activity accurately in a timely manner
as they all are time-sensitive issues that may result in havoc if not
prevented in time. Furthermore, encroachment in the border areas and
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unauthorised entry into the prohibited regions is a serious issue making
border surveillance mandatory.

It is a well-known fact that most real-life problems can be solved
with the help of suitable technologies. Fortunately, WSNs are widely
used and is a popular technology that can resolve the concerned
issue (Huang et al., 2018; Keung, Li, & Zhang, 2012; Singh, Sharma and
Singh, 2021; Singh, Sharma, Singh, & Kumar, 2019). WSNs are widely
deployed for various military applications such as intrusion detection in
border areas, combat monitoring, an unauthorised access to prohibited
areas, land mines detection, battlefield surveillance, reconnaissance,
and so on (Amutha, Sharma, & Nagar, 2020; Kandris, Nakas, Vomvas,
& Koulouras, 2020; Sharma & Nagar, 2020; Si, Ma, Tao, Fu, & Shu,
2020).
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Researchers have proposed various border surveillance and intru-
sion detection techniques using WSNs (Amutha, Nagar and Sharma,
2021; Arjun, Indukala, & Menon, 2019; Aseeri, Ahmed, Shakib, Ghor-
bel, & Shaman, 2017; Benahmed & Benahmed, 2019; Gavel, Raghu-
vanshi, & Tiwari, 2021; Karanja & Badru, 2021; Karthick, Prabaharan,
& Selvaprasanth, 2019; Mostafaei, Chowdhury, & Obaidat, 2018). The
proposed techniques use either simulations or Internet of Things (IoT)
methods to validate their techniques. However, simulation methods for
the validation of proposed techniques have high time complexity, i.e.,
the time taken to obtain a single output at a given value of sensor and
sensing range is in several hours. Also, IoT devices are very expensive
and require a huge financial investment. The high time complexity
and financial issues can be minimised to a negligible level using ma-
chine learning approaches to validate and predict the performance
of WSNs before their actual deployment in a given region (Kotiyal,
Singh, Sharma, Nagar, & Lee, 2021; Mishra, Varadharajan, Tupakula,
& Pilli, 2018; Singh, Nagar, Sharma and Kotiyal, 2021). However,
the accurate and timely detection and prevention of intrusion through
machine learning approaches is still an ill-posed problem that has been
insufficiently investigated. To address this issue, we propose a deep
learning architecture for accurate and timely intrusion detection and
prevention.

In this paper, we proposed a fully connected feed-forward ANN
architecture to predict the number of 𝑘-barriers for accurate intrusion
detection and prevention in WSNs using potential features. We have
extracted four features, namely area of the circular region, sensing
range of sensors, the transmission range of sensors, and the number
of sensors through the Monte Carlo simulation approach. Afterward,
we used these features to train and evaluate the performance of the
feed-forward ANN model using R, RMSE, bias, and computational time
complexity as performance metrics.

Further, the rest of the paper is divided into seven sections. In
Section 2, we have discussed the related works. In Section 3, we have
presented the system model. In this section, we have discussed the
sensor distribution models and the sensing model. In Section 4, we have
discussed the simulation experiment. In Section 5, we have discussed
the machine learning model. In this section, we have discussed the
feature importance, feature sensitivity, and model setup. In Section 6,
we have presented the results. Lastly, in Sections 7 and 8, we have
presented the discussion and conclusion of this study, respectively.

2. Related works

Deep learning is a subset of machine learning algorithms which
has been applied for intrusion detection using WSNs (Amutha, Sharma
and Sharma, 2021; Lee et al., 2021; Singh, Amutha, Nagar, Sharma, &
Lee, 2022a, 2022b; Sood, Prakash, Sharma, Singh, & Choubey, 2022).
It is also employed for pattern matching and network security where
it identifies the malicious activities occurring in the network and is
termed as Network Intrusion Detection System (NIDS). The accuracy of
the NIDS can be improved with the help of Recurrent Neural Network
IDS (RNNIDS) (Sohi, Seifert, & Ganji, 2021) which is capable of identi-
fying the complex patterns resulting in an enhanced intrusion detection
rate. Authors in Yin, Zhu, Fei, and He (2017) have proposed an RNNs
approach which examines the system behaviour, type of intrusion, and
the impact of intrusion on the intrusion detection accuracy with the
help of learning rate and the number of neurons. The major limitation
of RNNIDS is that it fails to minimise the false positives; thus, not
able to achieve the maximum detection rate. This issue has been dealt
with the help of a deep learning architecture that combines classifiers
with Convolution Neural Networks (CNN) having Long Short Term
Memory (LSTM), thus, offering maximum detection rate (Pektaş &
Acarman, 2019). Here, the CNN acquires spatial information, and the
LSTM acquires temporal features from the received packets in the
network. The optimal parameters in the feature space are obtained by
employing an estimator known as tree-structured Parzen. This method
2

focuses on generating flow-based statistical features rather than data-
set features. Although the abnormal traffic can be detected with an
accuracy rate of 99.09% and a false alarm rate of 0.0227, it fails to
compute the computational time complexity of flow-based intrusion
detection method.

A deep learning approach that uses an auto-encoder strategy ex-
hibits an improvement in the time complexity by 18.12% (Abbasi,
Bashir, Qureshi, ul Islam, & Jeon, 2021). This strategy uses multi-
layer perception to replace the detection of hierarchical features and
unsupervised feature learning. Thus, it enhances the pattern matching
mechanism for intrusion detection with the help of Deep Learning-
based Feature Extraction (DLFE), which is an Optimisation of Pattern
Matching (OPM) approaches. Another approach called Scale-Hybrid-
IDS-AlertNet (SHIA) (Vinayakumar et al., 2019) performs data com-
putation at the network and the host-level for the intrusion detection
and delivers the relevant alert notifications to the controller auto-
matically. A Deep Neural Network (DNN) can render an effective
IDS that can detect and classify the intruders crossing the Region of
Interest (RoI). Here, the performance of SHIA is measured in terms
of multi-class classification of the DNN, accuracy, True Positive Rate
(TPR), and False-Positive Rate (FPR). Although SHIA is scalable and
shows improved performance in handling large data-sets of real-time
systems, it does not compute the number of 𝑘-barriers and incurs high
computational costs.

Despite having a high computational complexity, ensemble-based
techniques have a high level of accuracy as compared to the base mod-
els. An ensemble based DNN framework for the continuous analysis of
intrusion detection along with the ability to learn hierarchical data-sets
automatically has been proposed in Folino, Folino, Guarascio, Pisani,
and Pontieri (2021). Here, a log-stream of an intrusion detection system
maintains an ensemble that contains classifiers trained on discrete
chunks of the data-set instance and a combiner model. The combiner
model performs reasoning on the instance parameters and classifier
predictions; after that, the efficacy is computed in terms of data scarcity
and accuracy that allows to analyse the diverse ensemble aggregation
strategies. This ensemble approach utilises the unstructured data that
does not comply with the transfer learning strategies and is found in
the log-stream of NIDS.

Barrier coverage using WSNs plays a crucial role in the detection
of an unauthorised personnel or object trying to enter the prohibited
region. Barriers are formed by the sensors deployed over the entire
given RoI. The early depletion of sensor’s energy leads to the failure of
the sensors causing blind spots in the barriers. To overcome this issue,
authors in Saraereh, Ali, Al-Tarawneh, and Khan (2021) have pro-
posed a set-based max-flow procedure for the re-deployment of mobile
sensors. This method determines the vulnerable locations and deploys
the mobile sensors which strengthens and prolongs the longevity of
the barrier. Although the algorithm exhibits higher efficiency in terms
of the computation time, it fails to predict the number of 𝑘-barriers
for the IDS. In Nagar and Sharma (2018), the authors have derived
an analytical closed-form expression using mobile sensors for the 𝑘-
arrier coverage probability of a WSN. Here, they have calculated
he total area covered by an intruder travelling at a given angle to
ross the RoI, Then, this total area is utilised to obtain the closed-
orm expression for the 𝑘-barrier coverage probability of the WSN. In

another work presented in Singh, Nagar et al. (2021), the authors have
employed three machine learning approaches, namely Gaussian Process
Regression (GPR), Scaling GPR (S-GPR), and Center mean GPR (C-GPR)
to predict the 𝑘-barrier coverage probability of a WSN. The proposed
GPR technique quickly detects and prevents any intrusion from taking
place at any location in the RoI. A three-level hierarchy scheme to
detect a mobile intruder in distributed WSNs is proposed in Sharma
and Chauhan (2020) improving the precision of intrusion detection. To
maximise the probability of intrusion detection, the authors have used
diverse sensing techniques, 𝑘-mean clustering, and the Likelihood Ratio

Test (LRT) methods. The LRT fusion rule used in this scheme is efficient
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Fig. 1. Illustration of (a) Gaussian sensor distribution and (b) Uniform sensor distribution. The blue-filled circles represent sensors.
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in terms of metrics like detection probability and false alarm rate at a
given number of sensors and the speed of the mobile intruder.

The algorithms and strategies proposed in the literature fail to
accurately predict the number of 𝑘-barriers for intrusion detection.
Hence, the overall aim of this study is to overcome the limitation
of the previous studies in terms of accuracy and computational time
complexity using a deep learning approach.

3. System model

This section briefly discusses sensor distribution models, sensing
range model, and the performance metric, namely the number of
𝑘-barriers.

3.1. Sensor distribution model

The choice of sensor distribution model depends on the required
application. In this work, we consider two-sensor distribution models;
(i) Gaussian distribution model and (ii) uniformly distribution model.

3.1.1. Gaussian sensor distribution model
In this model, a finite number of sensors are installed in a finite

circular region of radius 𝑅 meters following a 2D Gaussian distribution,
also known as a normal distribution (Fig. 1a). Thus, the Probability
Density Function (PDF) for a location (𝑥, 𝑦) to be installed with a sensor
is given by Wang, Xie, and Agrawal (2008)

𝑓 (𝑥, 𝑦) = 1
2𝜋𝜎𝑥𝜎𝑦

𝑒
−( (𝑥−𝑥𝑐 )

2

2𝜎2𝑥
+ (𝑦−𝑦𝑐 )2

2𝜎2𝑦
)

(1)

where (𝑥𝑐 , 𝑦𝑐 ) represents the centre of the circular region, 𝜎𝑥 and 𝜎𝑦
are the standard deviations of 𝑥 and 𝑦 location coordinates respec-
tively. Furthermore, the location of a sensor inside the circular region
represented by (𝛾, 𝜙) can also be modelled with the help of position
coordinates (𝑥, 𝑦) if

𝑓 (𝑥, 𝑦) ∶
√

(𝑥 − 𝑥𝑐 )2 + (𝑦 − 𝑦𝑐 )2 ≤ 𝑅 = 𝑓 (𝛾, 𝜙) ∶ 𝛾 ≤ 𝑅 (2)

3.1.2. Uniform sensor distribution model
In this model, a finite number of sensors are distributed uniformly

and randomly inside a finite circular region (denoted by ℜ) of radius
𝑅 meters (Fig. 1b). The position of a random sensor within the circular
region is represented by 𝑃𝑐 = (𝛾, 𝜙), where, 𝛾 ∈ [0, 𝑅], denotes the
istance of the sensor from the centre of the circular region, and
∈ [0, 2𝜋], denotes the angle between the 𝑥-axis and the line that
3

passes through the sensor location. The resulting sensor distribution
probability density function is given by

𝑓𝑝(ℜ) =

{

1, 𝑖𝑓𝑃𝑐 ∈ ℜ
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

Furthermore, the probability that a sensor is located at an arbitrary
osition 𝑃𝑐 = (𝛾, 𝜙) inside the circular region is given by

(𝑃𝑐 ) =
1

𝜋𝑅2
(4)

3.2. Binary sensing range model

The binary sensing range model is one of the most widely employed
sensing range models for estimating the performance of WSNs (Laran-
jeira & Rodrigues, 2014; Nagar, Chaturvedi, & Soh, 2020). A point 𝑖
denoted by 𝑃𝑖(𝑥𝑖, 𝑦𝑖) inside the 2D circular region will be covered by a
sensor 𝑗 located at 𝑆𝑗 (𝑥𝑗 , 𝑦𝑗 ), if the Euclidean distance of point 𝑖 from
the sensor 𝑗 is less than or equal to the sensing range 𝑟𝑠 of the sensor.
Mathematically, it can be represented as

𝑃 (𝑆𝑖) =

{

1, 𝑖𝑓𝑑(𝑆𝑖, 𝑃𝑖) ≤ 𝑟s

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(5)

3.3. Coverage graph

Coverage measures how well sensors monitor the RoI in which they
are deployed. The 𝑘-coverage ensures that each point in the target RoI
is covered by at least 𝑘 distinct sensors, where 𝑘 is a positive integer
having a typical value greater than one. A connected 𝑘-coverage is
achieved when each point in the RoI is covered by at least 𝑘 distinct
ensors and each sensor is able to communicate with each other. An
ptimal 𝑘-coverage of the network is obtained when each point within
he RoI is covered by at least 𝑘 distinct sensor without any overlapping

area. A Coverage Graph (CG) is denoted by CG(N) = (V, E), where V
denotes the number of vertices and E denotes the number of edges.
Here, each vertex represents a sensor and an edge represents a link
between any two sensors if and only if they fall within the coverage of
each other. To construct a CG for a circular RoI, we have built sensor-
disjoint cycles within the entire RoI. A WSN rendering two-barrier
coverage inside a circular RoI is shown in Fig. 2a, and its respective
CG is depicted in Fig. 2b.

3.4. Barrier and barrier path

A barrier along the boundaries of a circular RoI can be constructed
by taking the union of distinct sensor coverage. Any arbitrary point

from where an intruder may enter the RoI is known as the point of
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Fig. 2. Illustration of (a) 2-Barrier coverage and (b) Coverage graph.
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Table 1
Simulation parameters.

Parameters Values

Simulator NS-2.35
Radius of the circular region (R) 40 to 127 m
Number of sensors (N) 100 to 400
Sensing range (Rs) 15 to 40 m
Transmission range (Rtx) 30 to 80 m
Mac type IEEE 802.11
Sensor’s deployment type (a) Gaussian Distribution

(b) Uniform Distribution
Sensing model Binary sensing model

intrusion and any possible path that an intruder may follow to reach the
target point is called an intrusion path. In order to provide a guaranteed
barrier coverage, there must exist at least one barrier for every possible
intrusion path. In this way, any intrusion attempt can be identified and
prevented in a timely manner. The maximum number of barrier paths
𝐵𝑃𝑚𝑎𝑥 that can be constructed for a given intrusion path without any
overlapping coverage is given by Eq. (6).

𝐵𝑃𝑚𝑎𝑥 = ⌊

𝑁
𝑘
⌋ (6)

where N represents the total number of sensors and 𝑘 represents the
number of sensors required to ensure 𝑘 barrier coverage for a possible
intrusion path.

4. Simulation experiment

We have obtained the simulation results using network simulator
NS-2.35, one of the widely used network simulators to obtain the per-
formance metrics of WSNs. Table 1 shows different network parameters
and their values used to get the simulation results for the number
of 𝑘-barrier paths. Here, we have assumed that any two sensors can
communicate with each other iff the transmission range of sensors (Rtx)
is at least twice the sensing range of sensors (Rs), i.e., Rtx ≥ 2Rs.

5. Machine learning model

Machine learning algorithms are broadly classified into supervised
and unsupervised learning algorithms. In supervised machine learning,
we work with labelled data sets. It is mainly used to solve either
regression or classification problems. In contrast, unsupervised machine
learning algorithms deal with unlabelled data sets and are mainly used
to perform clustering and dimension reduction tasks.

In this study, our objective is to assess the potential of fully con-
nected feed-forward ANN to map the number of 𝑘-barriers using rele-
vant features. To evaluate the relevancy of the selected features, we
have calculated the feature importance score and performed feature
4

sensitivity analysis.
5.1. Feature importance

This study used the area of the RoI, sensing range, transmission
range, and the number of sensors as the potential features and 𝑘-
arriers as the predictand. In machine learning, the selection of input
eatures significantly affects its performance (Singh, Kotiyal, Sharma,
agar, & Lee, 2020). Hence, before training the machine learning
odel, we have evaluated the relative importance of each selected

eature on the predictand. In doing so, we opted regression tree ensem-
le technique (Torres-Barrán, Alonso, & Dorronsoro, 2019). We have
irst trained a regression tree ensemble model by boosting hundred
egression trees using the Least Squares gradient Boosting (LSBoost)
nsemble aggregation method (i.e., 𝑟 = 100), each with a learning rate
f one (i.e., 𝛼 = 1), and the classical decision tree (i.e., decision stumps)

has been considered as a weak learner. The LBoost algorithm trains
one weak learner at a time and also detects its weak points. Based on
such weak points, it generates a new weak learner (li) and evaluates
its weight (i.e., 𝑤𝑖). According to (Eq. (7)), the algorithm improves the
current model (𝑀𝑖) by emphasising on the prior weak learner’s (𝑀𝑖−1)
weak point. After it has been trained, it integrates the weak learner
into the existing model, and creates a single strong learner (𝑀𝑟, i.e., an
ensemble of weak learners) iteratively.

𝑀𝑖 = 𝑀𝑖−1 + 𝛼 . 𝑤𝑖 . 𝑙𝑖 (𝑖 = 1, 2, 3,… , 𝑟) (7)

In addition, we determine the relative feature importance score by
evaluating the overall variations in the node risk (𝛥𝑅) due to the split
on each feature, and then normalising it by the total number of branch
nodes (𝑅𝑏𝑛). Mathematically, it is represented as in (Eq. (8));

𝛥𝑅 =
𝑅𝑝 − (𝑅𝑐ℎ1 + 𝑅𝑐ℎ2)

𝑅𝑏𝑛
(8)

where 𝑅𝑝 denotes the node risk of the parent and 𝑅𝑐ℎ1 &𝑅𝑐ℎ2 denotes
the node risk of two children. The node risk at an individual node (Ri)
is mathematically represented as in (Eq. (9));

𝑅𝑖 = 𝑃𝑖 . 𝐸𝑖 (9)

where 𝑃𝑖 denotes the probability of node i and 𝐸𝑖 denotes the mean
square error of the 𝑖𝑡ℎ node.

5.2. Feature sensitivity

Estimating the feature importance score only tells us about the
relative importance of each feature. However, it does not convey
how the features are associated with the predictand, i.e., whether the
predictand value increases with feature (positive impact) or decreases
with features (negative impact). To evaluate this, we have performed
the sensitivity analysis of the features using the Partial Dependence Plot
(PDP) (Friedman, 2001; Singh, Nagar et al., 2021). PDP measures the
average effect of a single or more features by marginalising the effect of
all other features taken into consideration. We considered the combined
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Fig. 3. Structure of the fully connected feed-forward ANN model having four inputs, two hidden layers having 20 neurons each, and one output (i.e., 4:20:20:1).
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impact of two features simultaneously from the input feature set (i.e.,
𝜗) on the predictand by marginalising the impact of the remaining
features. To do so, a subset 𝜗s and a complimentary set (𝜗c) of 𝜗s are
extracted from the feature set (𝜗 = {k1, k2, . . . , kn}) where, n represents
he total features. Using (Eq. (10)), we can compute any prediction on
.

(𝜗) = 𝑓 (𝜗𝑠, 𝜗𝑐 ) (10)

he partial dependence of the feature in 𝜗s can be determined by
alculating the expectation (Ec) of Eq. (11).
𝑠(𝜗𝑠) = 𝐸𝑐 [𝑓 (𝜗𝑠, 𝜗𝑐 )]

= ∫ 𝑓 (𝜗𝑠, 𝜗𝑐 ) . 𝜌𝑐 (𝜗𝑐 ) . 𝑑𝜗𝑐
(11)

here 𝜌𝑐 (𝜗𝑐 ) indicates the marginal probability of 𝜗𝑐 , which is repre-
ented in Eq. (12).

𝑐 (𝜗𝑐 ) ≈ ∫ 𝑝(𝜗𝑠, 𝜗𝑐 ) . 𝑑𝜗𝑠 (12)

hen, the partial dependency of the feature in 𝜗𝑠 can be determined by

𝑠(𝜗𝑠) ≈ 1
𝑇

𝑇
∑

𝑖=1
𝑓 (𝜗𝑠, 𝜗𝑐𝑖 ) (13)

here 𝑇 represents the total number of observations.

.3. Model setup

In this subsection, we have discussed the architecture of the fully
onnected feed-forward ANN including its working, activation function,
5

nd the training algorithm. G
.3.1. Feed forward ANN
A Neural Network (NN) is a model which mimics the oversim-

lification of the brain performance that operates under a particular
pecific function of interest. The primary objective of the NN model is
o discover a mapping function (f) that predicts a target function (f*)

through training the NN using labelled training data sets. During the
training phase, the network learns the range of parameters from the
training data. Once we trained the model, we need to validate and test
its performance using the unseen data.

A network can be subdivided into basic information-processing ele-
ments called neurons, which are the building blocks of ANN. Layers are
groups of neurons, and the network is comprised of interconnections
between these layers. There are diverse perspectives of linking layers
together that lead to several other forms of NNs like feed-forward
neural networks, recurrent neural networks, and convolutional neural
networks. In general, the optimisation problem of a neural network can
be represented by Eq. (14), where l represents the loss function, and W
is the learnable parameter. The main objective is to learn W so that the
ariance between the output of f can be minimised, when the input x0
nd the actual output y are provided.

𝑖𝑛 𝑙(𝑓 (𝑥0,𝑊 ), 𝑦) (14)

In this study, we have trained a fully connected feed-forward ANN.
t is a category of NN formed by organising neurons so that all neurons
n each layer are linked to every other neuron in the adjacent forward
ayer. The data flows mainly in one direction, i.e., forward, from the
nput neurons to the output, passing through the hidden layers (if any).
ince each neuron has one activation function, the total activation func-
ion for a layer equals the total output value. The training algorithm
tilises the output findings to calibrate the sensor connection weight
alue (Moldovan, Caţaron, & Andonie, 2020; Novickis, Justs, Ozols, &
reitāns, 2020). Any continuous function can be approximated by a
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feed-forward ANN with one hidden layer. However, the desired hidden
size might be high, making learning unfeasible. Feed-forward ANN is
well-suited for unstructured data, such as data that is not sequential or
time-dependent.

In this study, we structured a feed-forward ANN that consists of
two hidden layers and one output layer, as illustrated in Fig. 3. Each
hidden layers consist of twenty neurons. A common bias value is added
to each neuron in the hidden layers, which is followed by an activation
function.

5.3.2. Activation function
In feed-forward ANN, the activation function is one of the essential

key elements of the neuron (Duch & Jankowski, 1999). It significantly
impacts the performance of the neural networks by modifying the
neuron output. The Universal Approximation Theorem states that a
feed-forward ANN with one hidden layer and an arbitrary sigmoidal
function with adequate sensors can estimate any continuous function
with no restrictions on the number of sensors or the size of the weights.
In this study, we have used the hyperbolic tangent sigmoid transfer
function at each layer because it is a bipolar sigmoid function that
has a positive response for a positive input and a negative response
for a negative input. Hence, it eliminates the problem of negative
responses for positive values. Further, as the complexity and non-
linear of the problems increases (when we increase the number of
sensors and the monitoring area in WSNs), the advantage of using the
hyperbolic tangent sigmoid transfer function becomes more apparent.
The mathematical model is expressed as:

𝑎 = 2
(1 + 𝑒(−2⋅𝑛)) − 1

(15)

This expression is mathematically equivalent to tanh(n). However,
the computational time complexity of Eq. (15) is lower than tanh(n).

5.3.3. Training algorithm
To minimise the error in the output, the values of weights and

biases need to be updated. This is done with the help of a backpropa-
gation training algorithm. In the backpropagation algorithm, the input
is transmitted to the hidden layer, which then perpetuates back the
sensitivity in order to minimise the error rate by updating the weights
and the bias during the process. This algorithm results in low conver-
gence, and in some cases, it also leads to over-fitting. To address these
issues, and for quick convergence without over-fitting, approaches like
Levenberg–Marquardt backpropagation (LM) and Bayesian Regular-
ization (BR) backpropagation, and Scaled Conjugate Gradient (SCG)
backpropagation have been developed. To minimise the sum of squares
at every iteration, LM utilises the conjugate gradient backpropagation
method. LM is used for curve fitting problems, while SCG is used for
pattern recognition problems. Bayesian regularization backpropagation
algorithm uses an objective function that incorporates the sum of
squared weights and the residual sum of squares in order to reduce
the prediction errors for attaining the desired model.

In this study, we have used the LM backpropagation algorithm. It is
a non-linear optimisation-based approach for training ANNs, by which
it uses second-order derivatives for improved convergence behaviour.
The LM algorithm offers the features of the steepest descent approach
along with the Gauss–Newton method, which provides an invertible
matrix, named Hessian matrix (H) which is shown in Eq. (16):

𝐻(𝑥) ≈ 𝐽𝑇 (𝑥)𝐽 (𝑥) + 𝜇𝐼 (16)

where, 𝜇 represents the combination co-efficient, J and I represents
the Jacobian and identity matrix respectively. The LM modification to
the Gauss–Newton algorithm (Hagan & Menhaj, 1994) is represented
in Eq. (17):

𝑇 −1 𝑇
6

𝛥𝑥 = [𝐽 (𝑥)𝐽 (𝑥) + 𝜇𝐼] 𝐽 (𝑥)𝑒(𝑥) (17) t
The algorithm seems to be the steepest descent when the value of 𝜇
becomes high, whereas the algorithm is Gauss–Newton when the value
of 𝜇 is minimal. The LM algorithm for the weight update rule (Mathew,
Griffin, Alamaniotis, Kanarachos, & Fitzpatrick, 2018) is determined as
a function of Jacobian matrix and error vector (e), which is represented
in Eq. (18):

𝑤(𝑡 + 1) = 𝑤(𝑡) − (𝐽𝑇
𝑡 𝐽𝑡 + 𝜇𝐼)−1 + 𝐽𝑡𝑒𝑡 (18)

We have randomly divided (using the Mersenne Twister generator)
he complete data set (182 × 5) in a 55:15:30 ratio for training, vali-
ation, and testing of the feed-forward ANN algorithm. The complete
ethodology is shown in Fig. 4.

. Results

This section presents the results of feature importance analysis,
eature sensitivity analysis, and feed-forward ANN.

.1. Feature importance of each features

Once we evaluated the feature importance of each feature for both
aussian and uniform sensor distribution, we plotted the relative im-
ortance graph for both scenarios (Fig. 5). The higher the importance
core, the more important the feature is. We found that the relative
mportance score of the sensing range, transmission range, and sensors
s the same and the maximum. In contrast, the area has the least relative
mportance amongst all the features for both scenarios.

.2. Feature sensitivity curve

To analyse the feature sensitivity, we have plotted the surface plot
f PDP considering two features at a time along with the corresponding
wo-dimensional plot with an axis-aligned histogram representing the
istribution of the features. For four features, we have six possible
ensitivity plots. Again, we have plotted it for both scenarios i.e., for
aussian and uniform sensor distribution in Figs. 6 and 7, respectively.

For both scenarios, we observed that the area of the circular region
as a negative impact on the number of barriers. In contrast, sensing
ange, transmission range, and the number of sensors positively impact
he number of barriers. In a nutshell, we observed a similar trend with
light variation in the values for both scenarios.

.3. Performance of the fully connected feed-forward ANN model

Once we trained the feed-forward ANN model for Gaussian and Uni-
orm distribution scenarios, we evaluated its performance by plotting
linear regression curve between the predicted and observed barriers.
e have used R, RMSE, and bias as the performance metrics. A high

alue of R represents that the predicted values are well in accord with
he observed value. A low value of RMSE represents a more accurate
odel. A positive value of bias shows overestimation, and a negative

alue of bias shows underestimation. Afterward, we performed error
nd residual analysis for a robust conclusion.

.3.1. For Gaussian sensor distribution

To evaluate the performance of the trained feed-forward ANN for
aussian sensor distribution, we have reported the training, validation,

esting, and overall accuracy. For training accuracy, we fed the training
ata set as input to the trained feed-forward ANN and evaluated its
erformance. We found that the trained model work reasonably well on
he training data set with R = 0.82, RMSE = 43.38, and bias = −5.11
Fig. 8a). The presence of a small negative bias indicates that the values
re slightly getting underestimated. Evaluating the model performance
sing the test data results in bias study and hence its performance needs

o be evaluated using the unseen/new data sets. In doing so, we have
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Fig. 4. Flowchart of the methodology.

Fig. 5. Feature importance graph.
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Fig. 6. Partial dependency plot for circular region considering Gaussian sensor distribution.

Fig. 7. Partial dependency plot for circular region considering uniform sensor distribution.
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Fig. 8. Performance of the feed-forward ANN for Gaussian sensor distribution case (a) training accuracy, (b) validation accuracy, (c) testing accuracy, and (d) overall accuracy.
first validated the trained feed-forward ANN model through validation
data set (Fig. 8b). We found that the trained model performs well and
results in a good fit (with R = 0.76, RMSE = 34.79, and bias = 3.99)
while tuning the hyper-parameters. Afterward, we used the test data
for unbiased evaluation of the trained model (Fig. 8c). We observed
that the trained model performed well on the test data (with R = 0.76,
RMSE = 29.86, and bias = 17.31). The predicted value accord well
with the observed value with slight scattering. The presence of positive
bias represents that the values are slightly overestimated during the
testing phase. Finally, we combined all the data sets together (training,
validation, and testing) and fed it into the trained feed-forward ANN
model to calculate the model’s overall accuracy. We found that the
trained model performs reasonably well on the complete data sets with
R = 0.78, RMSE = 41.15, and bias = 3.02 (Fig. 8d).

Further, to analyse the error distribution during the training, valida-
ion, and testing phase, we have performed error analysis and plotted
he combined error histogram using twenty bins (Fig. 9). The combined
rror from the trained feed-forward ANN model ranges from −87.94

(leftmost bin) to 150.8 (rightmost bin) and follows a slightly right-
skewed Gaussian distribution. The peak of the distribution lies near
the zero error line indicating a more accurate model. The region left
to the zero error line indicates overestimated region, and the one on
the right represents an underestimated region. Overall, the number of
instances in the overestimated region is higher than the underestimated
region, results in the overestimation of predicted values by the trained
deep learning model. This statement is validated by the presence of a
9

positive bias of 3.02 (Fig. 8d).
Furthermore, to evaluate the appropriateness of the trained model,
we have performed the residual analysis and plotted the time series
plot of the test data along with the corresponding residual plot. We
have plotted the observed values (in blue) and predicted values (in
red) along with their 95% Confidence Interval (C.I). The dashed line
represents the RMSE value of the testing phase. The residuals are well
scattered and do not follows any specific pattern indicating a good fit
(Fig. 10).

6.3.2. For uniform sensor distribution
Similar to the Gaussian sensor distribution scenario, we have also

evaluated the performance of the deep learning model for uniform
sensor distribution. We reported the training, validation, testing, and
overall accuracy of the feed-forward ANN model that we trained for
uniform sensor distribution. For training accuracy, we have evaluated
the model over the training data sets. In doing so, we observed that the
model performs quite well over the training data sets (Fig. 11a). The
predicted values are close to the observed values (with R = 0.79, RMSE
= 55, and bias = 3.65). However, the RMSE is high, and R is slightly
low as compared to the training accuracy of the Gaussian sensor distri-
bution. Afterward, we feed the validation data sets to the model input
to report the validation accuracy. The predicted values (while tuning
the hyper-parameters) are in agreement with the observed values with
R = 0.81, RMSE = 34.81, and bias = 10.35 (Fig. 11b). For unbiased
evaluation, we have evaluated the trained model performance over the
test data set. We observed that the trained model performs well over
the test data with R = 0.78, RMSE = 34.58, and bias = 19.89 (Fig. 11c).
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Fig. 9. Error analysis with error histogram with 20 bins for Gaussian sensor distribution case.
Fig. 10. Residual analysis of the feed-forward ANN output for Gaussian sensor distribution case.
inally, we feed the combined data into the model to report the overall
ccuracy.

We found that the trained model also performs well over the com-
lete data set with R = 0.79, RMSE = 48.36, and bias 9.55 (Fig. 11d).

Further, we perform the error analysis to understand the distribu-
ion of error in a uniform sensor distribution scenario. In doing so, we
lotted the combined error histogram using twenty bins (Fig. 12). We
bserved a similar trend as for the Gaussian sensor distribution scenario
espite the high error range. The total error ranges from −111.1

(leftmost bin) to 169 (rightmost bin) and follows a slightly right-skewed
Gaussian distribution. Here also, the peak of the distribution lies near
the zero error line indicating an accurate model. The total number of
10
instances in the overestimated region is higher than the underestimated
region. Due to this, a positive bias is present in the model.

Furthermore, we have performed the residual analysis and plotted
the time series plot of observed–predicted values for the testing phase
along with the corresponding residual plot (Fig. 13). Here, the residuals
are well scattered and do not follow any particular path or pattern,
indicating that the linear plot is a good fit.

7. Discussion

This study uses fully connected feed-forward ANN to predict the
number of 𝑘-barriers for intrusion detection in WSNs. We trained two
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Fig. 11. Performance of the feed-forward ANN for uniform sensor distribution case (a) training accuracy, (b) validation accuracy, (c) testing accuracy, and (d) overall accuracy.

Fig. 12. Error analysis with error histogram with 20 bins for uniform sensor distribution case.
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Fig. 13. Residual analysis of the feed-forward ANN output for uniform sensor distribution case.
separate feed-forward ANN models for Gaussian and uniform sensor
distribution scenarios. We observed that the proposed architecture of
a fully connected feed-forward ANN model gives promising results for
both scenarios. Although the correlation coefficient value is nearly
equal for both scenarios, the RMSE and bias value for the Gaussian
sensor distribution scenario is better.

7.1. Comparing with different variant of feed-forward ANN

For an unbiased evaluation, we have generated different scenarios
of the feed-forward ANN model based on the number of hidden layers
used, ranging from shallow to deep feed-forward ANN model (Table 2).
To do so, we have selected six different scenarios corresponding to
1, 2, 3, 4, 5, and 10 hidden layers. A feed-forward ANN model with
more than ten hidden layers will result in high time complexity and
eventually not an optimal solution for intrusion detection, which is
a time-sensitive application. We have reported the training, valida-
tion, testing, and overall accuracy for all six scenarios. Based on the
overall performance, we have categorised the performance of each sce-
nario into poor, fair, and satisfactory. We found that the feed-forward
ANN with 2, 3, and 10 layers resulted in satisfactory performance.
Out of these three scenarios, feed-forward ANN with two layers (i.e.,
4:20:20:1) shows the best performance.

7.2. Comparison with the benchmark algorithms

Various other findings have been reported for high intrusion detec-
tion accuracy through the machine learning approach (Nancy et al.,
2020; Safaldin, Otair, & Abualigah, 2021). Hence, any conclusion
based on comparing different scenarios of a single algorithm may
result in a biased conclusion. To ensure a fair evaluation of the pro-
posed approach, we have compared the results of feed-forward ANN
with the other benchmark algorithms using R, RMSE, and bias as the
performance metrics. We have selected Radial Basis Neural Network
(RBN), Exact Radial Basis Neural Network (ERBN), Recurrent Neu-
ral Network (RNN), LSTM, Boosting (Least-square boosting) Ensemble
Learning (EL), Bagging EL (Random Forest), Binary Decision Tree
(BDT), General Regression Neural Network (GRNN), Gaussian Process
Regression (GPR), and Support Vector Regression (SVR) as potential
12
benchmark algorithms because these algorithms are amongst best per-
forming algorithms in the black-box and explainable based machine
learning category (Belle & Papantonis, 2021; Elias et al., 2020; Lin
et al., 2020; Lundberg et al., 2018; Mansor et al., 2020; Roscher, Bohn,
Duarte, & Garcke, 2020; Singh, Gaurav, Rai and Beg, 2021; Zhang,
Zhang, Ye, Fang, & Han, 2020). On comparing, we found that the
feed-forward ANN outperforms all the benchmark algorithms in terms
of R, RMSE and bias (Table 3). Other than the feed-forward ANN,
SVR performs well and ranks second among the benchmark algorithms.
Interestingly, we found that some benchmark algorithms show a strong
correlation (i.e., high R value); however, they produce biased results.
The bias values are very high, indicating that these models strongly
overestimate the response variable.

7.3. Comparison of the computational time complexity

Further, we have also compared the performance of the algorithms
mentioned above in terms of computational efficiency. We have es-
timated and plotted the computational time complexity graph of all
the three algorithms for both scenarios (Fig. 14). We observed that
the feed-forward ANN algorithm exhibits the lowest, and the LSTM
exhibits the highest computational time complexity. Apart from this,
we have also plotted the time complexity of the Monte Carlo simulation
for three different scenarios. We have estimated the time-complexity
for sensors as 100, 200, and 300. We have kept the other features
constant (area ≈ 5000, sensing range = 15, and transmission range =
30). We observed that the computation time-complexity of the Monte
Carlo simulation increases with the number of sensors. This shows the
efficacy and need of the proposed deep learning architecture to cut
down the computational cost during the network setup time.

8. Conclusion

This study presented a fully connected feed-forward ANN architec-
ture for the accurate mapping of the number of 𝑘-barriers for intrusion
detection using WSNs. In doing so, we have trained two separate
feed-forward ANN models for both Gaussian and uniform sensor dis-
tribution using four potential features extracted through simulations.

While evaluating the feature importance and feature sensitivity for
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Table 2
Comparison of the performance of different scenarios of feed-forward ANN.

Scenarios Training Validation Testing Overall Performance

R RMSE Bias R RMSE Bias R RMSE Bias R RMSE Bias

4:20:1 (Single layer) Gaussian 0.40 60.66 −11.69 0.28 53.27 −17.26 0.55 61.46 19.05 0.44 59.69 −3.23 Fair
Uniform 0.51 67.08 6.44 0.53 52.25 8.81 0.53 52.25 8.81 0.56 65.06 17.31 Fair

4:20:20:1 (Two layers) Gaussian 0.82 43.38 −5.11 0.76 34.79 3.99 0.76 29.86 17.31 0.78 41.15 3.02 Satisfactory
Uniform 0.79 55.00 3.65 0.81 34.81 10.35 0.78 34.58 19.89 0.79 48.36 9.55 Satisfactory

4:20:20:20:1 (Three layers) Gaussian 0.81 42.94 −2.91 0.75 44.94 13.66 0.72 37.51 2.08 0.76 42.93 1.06 Satisfactory
Uniform 0.82 49.54 14.69 0.80 48.62 18.31 0.66 47.90 22.24 0.77 50.17 17.51 Satisfactory

4:20:20:20:20:1 (Four layers) Gaussian 0.44 59.93 −10.18 0.30 58.59 −20.99 0.54 57.61 −12.55 0.47 58.74 −12.50 Fair
Uniform 0.08 78.32 −55.49 0.01 70.94 −43.85 0.12 81.12 −84.73 0.09 78.08 −62.60 Poor

4:20:20:20:20:20:1 (Five layers) Gaussian 0.46 62.44 −24.53 0.28 67.11 −17.13 0.42 50.32 −11.17 0.43 60.00 −19.40 Fair
Uniform 0.11 83.11 −102.25 0.06 84.13 −97.75 0.08 62.41 −70.25 0.07 78.22 −91.91 Poor

4:20:20: ... :20:20:1 (Ten layers) Gaussian 0.64 48.35 25.09 0.82 46.20 9.78 0.75 45.01 22.25 0.69 47.72 21.96 Satisfactory
Uniform 0.75 47.90 0.44 0.78 59.69 −3.47 0.70 59.17 5.20 0.73 53.23 1.30 Satisfactory
Table 3
Comparison with the benchmark algorithms.

Performance
metrics

Methods

Feed forward ANN RBN ERBN RNN LSTM Boosting EL Bagging EL (RF) BDT GRNN GPR SVR
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R 0.78 0.79 0.68 0.34 0.69 0.68 0.97 0.96 0.08 0.07 0.90 0.89 0.99 0.99 0.93 0.93 0.89 0.88 0.98 0.98 0.63 0.66
RMSE 41.15 48.36 65.67 168.51 75.12 89.68 15.71 22.27 1.16 1.42 37.31 46.00 11.37 12.63 29.29 32.90 39.66 48.80 11.49 13.72 48.44 52.22
Bias 3.02 9.55 39.19 137.51 60.11 71.11 61.45 65.36 −17.10 −20.9 59.06 69.96 53.90 62.35 57.42 63.22 60.70 71.69 53.18 61.07 18.24 20.26
ig. 14. Comparison of the computational time complexity of the feed-forward ANN with the benchmark algorithms with three different scenarios of Monte Carlo simulations. A
og scale is used for the vertical axis.
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aussian and uniform sensor distribution scenarios, we observed that
ensing range, transmission range, and number of sensors are the most
elevant features amongst all, which positively impact the predictand.
n contrast, the area is the least important feature, and it is negatively
elated to the predictand. After training the models, we evaluated their
erformance over the unseen data and found that both models provide
romising results.
13

d

Further, we have compared the performance of the feed-forward
NN with the benchmark algorithms. We found that the proposed feed-

orward architecture outperforms the benchmark algorithms in terms of
ccuracy and computational time complexity.

This study is a step towards the accurate and time-efficient predic-
ion of the number of 𝑘-barriers for intrusion detection using WSNs. Our
ethodology can be used to cut down the time and cost requirements
uring practical network setup.
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