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A B S T R A C T

Ensuring fast and efficient Intrusion Detection and Prevention (IDP) at international borders is crucial for
maintaining security and safeguarding nations. In this study, we propose an innovative approach that harnesses
the power of machine learning and Wireless Sensor Networks (WSNs) to achieve faster and more accurate IDP.
Our novel Fuzzy fed Teaching Learning Based Optimisation regression algorithm (F-TLBO-ID) revolutionises
the prediction of the required number of 𝑘-barriers for rapid IDP. To develop and validate our approach, we
synthetically generated pertinent features using Monte-Carlo simulations. These features encompass essential
parameters such as the concerned region’s area, effective transmission range, effective sensing range, number
of sensor nodes, and the fading parameter. Training the F-TLBO-ID algorithm with these features yielded
exceptional results, accurately predicting the required number of 𝑘-barriers with an impressive correlation
coefficient (R = 0.99), minimal Root Mean Square Error (RMSE = 11.32), and negligible bias (−3.66). To
benchmark the performance of our F-TLBO-ID algorithm, we conducted comprehensive comparisons with
fine-tuned benchmark algorithms, including AutoML, GPR, GRNN, RF, RNN, SVM, and ANN. Additionally,
we evaluated the algorithm against 11 different variants of nature-inspired algorithms. Remarkably, our F-
TLBO-ID algorithm outperformed all these methods in terms of accuracy, firmly establishing its superiority.
Finally, we validated the performance of the F-TLBO-ID algorithm using publicly available datasets. The results
were highly satisfactory, exhibiting a strong correlation coefficient (R = 0.84), acceptable RMSE (36.24), and
minimal bias (−7.17). This study offers a robust and reliable algorithm to predict the required barriers for fast
IDP, surpassing the accuracy of existing benchmark algorithms. By implementing our proposed algorithm, the
efficiency of IDP systems at international borders can be significantly improved, ultimately enhancing security
and facilitating smooth border operations.
1. Introduction

Surveillance, intrusion detection, and prevention along interna-
tional boundaries are significant challenges for most countries. The
international boundaries of a country with the neighbouring states may
stretch from several hundred to thousands of kilometers, where it is im-
possible to station military personnel at every position. Consequently,
boundary regions are vulnerable to intrusion and other unauthorised
entries [1]. The problem at hand can be solved with the help of Wireless
Sensor Networks (WSNs).

A WSN is made of many sensors, which can operate independently
without the need for any pre-installed infrastructure. Further, these
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networks communicate in a single or multi-hop manner over wireless
channels. They can be installed on the fly easily in remote and/or
inaccessible terrain and emergency or hazardous scenarios [2,3]. Con-
sequently, WSNs have a colossal number of civilian as well as military
applications such as industrial and environmental monitoring, precision
agriculture, patient health monitoring, smart homes, air quality mon-
itoring, battlefield surveillance, coverage mapping, node localisation,
reconnaissance, and intrusion detection [4–7].

Intrusion detection is one of the significant applications of WSNs.
The various studies conducted on intrusion detection can be categorised
into two main categories. In the first type, the studies consider intrusion
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Fig. 1. Illustration of 2-barrier coverage in WSNs.
Fig. 2. Bibliometric analysis of the frequently used keywords on the intrusion detection based studies concerning machine learning algorithms. We considered 1573 research
articles published in the Web of Science (WoS) database with 512 publications from the year 2021.
detection as one of the desired functions of the system, where it can
identify vulnerabilities or compromised sensors and guarantee the de-
sired network response with minimum false alarms. In the second type,
the studies consider it as a surveillance and monitoring set-up capable
of detecting suspicious activity like intrusion and unauthorised activity
in a given Region of Interest (RoI) [8]. The paper in hand focuses on the
second category. This study assumes that an important entity is in the
centre of a circular RoI. To detect and prevent any possible movement
towards the target, sensor barriers are formed for any possible path
leading the intruder to the centre of the RoI. The aim is to achieve
𝑘-barrier coverage for any intrusion path. Fig. 1 shows such a scenario,
2

where sensors form 2-barrier coverage for all the possible paths from
the point of intrusion to the centre of the circular RoI.

Earlier researchers have employed WSNs for surveillance and intru-
sion detection purposes and found that WSNs are very effective and
render a cost-effective solution for intrusion detection and prevention
[9–14]. In Keung et al. [15], the authors have developed an analyt-
ical framework using mobile sensor networks for intrusion detection
and surveillance at border regions. With the help of the developed
framework, they examined the impact of various systems variables
such as sensor density, sensing range, and Sensor to Intruder Velocity
Ratio (SIVR) on the 𝑘-barrier coverage probability against the moving
intruder. Furthermore, they found that the same 𝑘-barrier coverage
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performance can be achieved by using fewer mobile sensors than static
sensors. In Luo and Zou [9], authors have proposed a barrier con-
structing algorithm for intrusion detection using WSNs. The proposed
algorithm is capable of identifying an illegal as well as a legal intruder
in a circular region. In another work [11], authors have presented
a sensor scheduling algorithm in which barrier-forming sensors can
stay in a sleeping state to save energy consumption. The proposed
scheme delivers an energy balance and maximal network lifetime.
Further, Ghosh et al. [10] have proposed two routing schemes that
render a cost and energy-efficient solution, thus, prolonging the lifetime
of WSNs deployed at unattended border regions and other hazardous
places. In Huang et al. [12], the authors have formulated an analytical
framework that considers sensors’ and intruders’ mobility patterns for
intrusion detection. The derived expression provides a better 𝑘-barrier
coverage probability than other approaches. Recently, He et al. [13]
have proposed a fault-tolerant intrusion detection algorithm to deal
with the false information communicated by the faulty sensors. The
proposed algorithm can identify almost all the faulty sensors and
achieves a lower false alarm rate. Chang et al. [16] proposed a novel
approach to achieve high-energy-efficient barrier coverage in under-
water WSNs. The approach is based on node alliances, considering
the detection and energy consumption modes of underwater WSNs. By
investigating the relationship between the number of virtual sensors
and energy consumption, they formulated the problem of achieving
high energy efficiency as an optimisation problem. Through solving this
optimisation problem, they determined the optimal number of physical
sensors required to form virtual fences. The construction of barrier
coverage in their approach takes into account both high detection
probability and low energy consumption. They demonstrated the effec-
tiveness of their proposed strategy in providing high-energy-efficient
barrier coverage in underwater WSNs through analytical and simula-
tion studies. More recently, a paper by Fan and Zhai [17] introduced
a distributed multi-layer ring barrier coverage algorithm to mitigate
the security risks associated with single-layer coverage. The authors
devised a distributed adjustment mechanism that operates between
multiple layers of barriers, which was integrated with the single-layer
ring barrier coverage algorithm to create a novel distributed multi-
layer ring barrier coverage algorithm. The effectiveness of the proposed
approach was evaluated through numerical simulations conducted by
the authors. It is necessary to mention that the above-discussed works
provide a great deal of knowledge towards understanding intrusion
detection problems, major challenges, issues, and possible solutions.
However, validating analytical models is computationally expensive
and needs huge financial support and time. Thus, it is essential to
devise new methods and approaches that are quick, cheap, and com-
putationally inexpensive for their validation. The problem at hand can
be resolved with the help of ML techniques that extract only valuable
information by discarding redundant ones; in this way, ML techniques
can reduce the computational time from hours to seconds.

We performed bibliometric analysis on the research articles pub-
lished in the Web of Science (WoS) database that relate machine
learning with intrusion detection (see Fig. 2). The frequently used
keywords have been marked in Fig. 2 from 1573 research articles. Each
circle represents an independent keyword, and the circle’s scale (i.e.,
diameter of the circle) represents the frequency of its occurrence [18].
We can clearly visualise the name of some of the frequently used
machine learning algorithms, such as Neural Network (NN), adversarial
machine learning, Elman NN, and decentralised machine learning. We
observed an exponential increase in the publications concerning the use
of the data-driven approach for accurate IDP, with a maximum of 512
research publications from 2021.

The rest of the manuscript has been divided into six sections.
Section 2 provides a comprehensive review of the state-of-the-art works
relevant to the present study. In Section 3, the system model is pre-
3

sented, and key terms are discussed. Section 4 focuses on the machine
learning model, covering aspects such as feature generation, impor-
tance calculation, the influence of each feature on the target variable,
and the proposed algorithm. The obtained results are presented in Sec-
tion 5. Section 6 compares these results with benchmark algorithms in
terms of accuracy and time-complexity. Additionally, the performance
of the proposed algorithm on publicly available datasets is evaluated,
and the limitations of the study are highlighted. Finally, the findings of
the study are summarised and concluded in Section 7.

2. Related works

Machine learning methodologies have garnered considerable inter-
est within the research community for their efficacy in tackling the
time-complexity and computation cost challenges inherent in tradi-
tional intrusion detection methods. A plethora of studies has been
undertaken to precisely predict the 𝑘-barriers, advancing the field of
fast intrusion detection. Singh et al. [19] have proposed three dif-
ferent ML algorithms based on Gaussian Process Regression (GPR) to
accurately predict the 𝑘-coverage probability for intrusion detection
using WSNs over a rectangular RoI. Based upon the feature scaling,
they have proposed Scale GPR (S-GPR), Centre-mean GPR (C-GPR),
and Not standarised (NS-GPR) algorithms. They extracted six predic-
tors: the number of sensors, sensing range, SIVR, Mobile to Static
Node Ratio (MSNR), angle of the intrusion path, and the required
𝑘 synthetically through Monte-Carlo simulations. They performed the
predictor importance analysis through the regression tree ensemble
approach and found the number of nodes to be the most relevant and
the intrusion path angle to be the least relevant feature in predicting the
𝑘-coverage probability. They have trained these three algorithms over
the extracted datasets. They have reported that the NS-GPR performs
better than the S-GPR and C-GPR (with R = 0.85 and RMSE = 0.095).
Also, they found that the NS-GPR outperforms all the corresponding
variants of Support Vector Regression (i.e., S-SVR, C-SVR, and NS-SVR).
n another study, Singh et al. [20] proposed an efficient algorithm
ased on predictor transformation and scaling. They have proposed an
T-FS-ID algorithm to precisely predict the 𝑘-barriers count required
or fast IDP using WSNs over a rectangular RoI. They have considered
he area of the RoI, number of sensors, transmission range, and sensing
ange as the potential predictors to predict the number of 𝑘-barriers.
hey extracted these features synthetically through Monte-Carlo sim-
lations considering the binary sensing model. They found the area
o be the least relevant feature and the other remaining features (i.e.,
he number of sensors, transmission range, and sensing range) to be
he most pertinent features in predicting the 𝑘-barriers. Further, they
eported that the proposed algorithms precisely predict the number
f 𝑘-barriers (with R = 0.98 and RMSE = 6.47). Also, the LT-FS-ID
utperforms several benchmark algorithms (i.e., GPR, GRNN, ANN, and
F). However, LT-FS-ID fails to accurately predict 𝑘-barriers if any
f the input features is not a real positive number. To overcome this
imitation, Singh et al. [1] proposed an automated machine learning
lgorithm, AutoML-ID, to predict the number of 𝑘-barriers over a
ectangular RoI considering Gaussian distribution node deployment.
hey only considered the explainable machine learning algorithms (i.e.,
VR, GPR, binary decision tree, bagging ensemble learning, boosting
nsemble learning, kernel regression, and linear regression model) for
xecuting the automated machine learning module. Similar to the LT-
S-ID case, they have synthetically extracted four features; area of the
oI, number of sensors, transmission range, and sensing range using
onte Carlo simulations considering binary sensing model to train and

alidate the proposed algorithm. They reported that the transmission
ange has the highest and the sensing range has the lowest relevancy
n predicting the 𝑘-barriers for accurate and fast intrusion detection
nd prevention. They found that the AutoML-ID algorithm performs
xceptionally well (with R = 1, RMSE = 0.007, and bias = −0.006) over
the unseen datasets. Also, it outperforms several benchmark algorithms
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such as Feed-Forward Neural Networks (FFNNs), Recurrent Neural Net-
works (RNNs), Radial Basis Functions Neural Networks (RBNN), Exact
RBNN (ERBNN), and GRNN. In their study, de Campos Souza et al. [21]
proposed an explainable Evolving Fuzzy Neural Network (EFNN) model
specifically designed to predict the presence of 𝑘-barriers accurately.
They conducted an evaluation of the proposed model using the LT-FS-
ID datasets [20] and reported a root mean square error (RMSE) value
of 11.16. Building upon this work, the authors aim to enhance the
capabilities of the EFNN model by incorporating the dataset generated
from the prediction task. This combined approach not only seeks to
achieve precise regression results but also aims to provide valuable
insights into the underlying data.

Apart from accurately predicting the 𝑘-barriers, researchers have
also proposed various solutions to predict the 𝑘-barriers coverage prob-
ability for fast IDP. Recently, Arora and Pal [22] proposed a deep
learning based architecture based on ANN to predict the 𝑘-coverage
probability for a circular RoI accurately. They also extracted synthetic
features through Monte Carlo simulations. They reported that the pro-
posed architecture accurately predicts the 𝑘-coverage probability with
R = 0.98 and RMSE = 0.07. More recently, Nagar et al. [23] proposed
a machine learning model based on Generalised Regression Neural
Network (GRNN) to predict the 𝑘-coverage probability for a rectangular
RoI by considering boundary effects (BEs) and shadowing effects (SEs).
They reported that the proposed model accurately mapped the 𝑘-
coverage probability with R = 0.78 and RMSE = 0.14. These results
highlight the effectiveness of their model in accurately estimating the
𝑘-coverage probability while considering the influences of boundary
effects and shadowing effects.

The existing literature in intrusion detection using machine learning
and WSNs has predominantly focused on either utilising explainable
machine learning models or black box models. These studies have
explored the trade-off between model interpretability and prediction
accuracy in the context of intrusion detection. While some researchers
have prioritised the development of models that offer explainability
and insights into the detection process, others have leaned towards
leveraging the predictive power of more complex but less interpretable
black box models. However, it is worth noting that none of the afore-
mentioned studies have explored the potential of harnessing the power
of coupling a Fuzzy Inference System (FIS) with a nature-inspired
algorithm for the efficient prediction of 𝑘-barriers in the context of fast
intrusion detection and prediction. By combining the interpretability
of FIS with the optimisation capabilities of nature-inspired algorithms,
there is a promising opportunity to enhance the accuracy and effec-
tiveness of predicting the presence of barriers, thereby improving the
overall performance of intrusion detection systems. This unexplored ap-
proach presents an exciting direction for future research in the field. In
addition, none of the above-mentioned studies have considered the log-
normal shadow fading model and circular RoI. Considering the research
gap and limitations of the previous studies, the study in hand has pro-
posed a novel evolutionary regression algorithm based on FIS and TLBO
to predict the number of 𝑘-barriers for intrusion detection employing
WSNs considering log-normal shadow fading model and circular RoI
concurrently. The choice of TLBO as the meta-heuristic algorithm
for this study was primarily driven by its well-established reputation
and widespread usage in various real-world problems [24,25]. TLBO
has consistently demonstrated competitive performance across diverse
engineering, economics, and computer science domains. Its simplicity,
efficiency, and ease of implementation have made it an attractive
option for researchers and practitioners. It should be noted that the
selection of an algorithm depends on the specific problem and research
objectives at hand. While newer algorithms may exhibit improved
performance in certain benchmark functions or specific scenarios, they
might not be universally suitable or yield optimal results for every
problem domain, particularly in regression tasks. On the other hand,
TLBO has showcased effectiveness in a wide range of problem types,
encompassing single-objective, multi-objective, and constrained opti-
misation problems [26]. The main contributions of this study are as
4

follows; t
• A robust framework is presented, consistently generating syn-
thetic datasets to offer an economical and efficient solution with
high reliability.

• Through the utilisation of the RReliefF algorithm, a rigorous
analysis is conducted to accurately identify the most relevant
features for intrusion detection and prevention.

• Comprehensive insights are gained by performing an extensive
sensitivity analysis of all the identified features. This analysis
is facilitated by employing advanced techniques such as a two-
dimensional Partial Dependency plot (PDP) and regression tree
ensemble learning.

• A pioneering evolutionary-based regression algorithm is pro-
posed, specifically designed for accurate intrusion detection and
prevention. The algorithm represents a significant advancement
in this domain, pushing the boundaries of existing approaches.

3. System model

This section discusses the system model consisting of the sensor
distribution model, the sensing range model, and some important terms
and definitions that are crucial for the work presented in this study.

3.1. Sensor distribution model

It is assumed that a finite 𝑁 number of sensors are distributed
niformly and randomly (i.e., the probability that a given sensor would
ie at an arbitrary point inside the region is the same for each sensor)
nside a finite circular region of radius 𝑅 meters and area 𝐴 = 𝜋𝑅2.

Each sensor is assumed to have identical hardware and software com-
ponents, resulting in similar computational and processing capabilities.
Mathematically, the probability that a sensor would lie at a random
point denoted by (𝑥, 𝑦) inside the circular region is given by Eq. (1)

𝑓 (𝑥, 𝑦) = 1
𝐴

(1)

3.2. Log-normal shadow fading model

Since a WSN may be deployed in regions full of impediments that
represent a realistic environment and may cause an abrupt change in
the received signal power. This abrupt change in the received signal
power is known as shadowing effects (SEs). Due to these SEs, the
sensing range of sensors is not uniform in all directions. Therefore,
earlier assumptions of uniform sensing range in all directions are not
true and cannot be used in realistic environments. This work considers
a more realistic and practical sensing range model, namely the log-
normal shadowing path-loss model that incorporates the influence of
SEs as well as the asymmetry in the sensing capability of sensors. The
probability that the sensor would detect a target located at a distance
𝑟 from the sensor is given by Eq. (2) [27].

𝑃𝑑𝑒𝑡 (𝑟) = 𝜙
(

10𝜉 log10 (𝑟∕�̄�)
𝜎

)

(2)

where, 𝜙 (𝜓) = 1
√

2𝜋
∫ ∞
𝜓 exp

(

−𝜒2𝜎
2

)

𝑑𝜒𝜎 ; 𝜉, 𝜎 and �̄� represent the signal
ower decay factor, standard deviation of SEs, and the expected sensing
ange of sensors, respectively.

.3. Barrier and barrier path

We are familiar with the traditional method of protecting a specific
egion or entity from any kind of intrusion or demolition by fencing
round it. Nowadays, the same approach has been extended using
lectric fences and WSNs. Currently, WSNs are being deployed to form
arriers around circular regions and at borders to detect and prevent
ny kind of intrusion from the enemy side. Border surveillance should
ake sure that no enemy moves or illegal immigration take place across
he state boundaries. In order to achieve the same, every path existing
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Table 1
Simulation parameters used to synthetically extract the potential features.

Parameters Values

Simulator NS-2.35
Network Region Circular RoI
Network Area (m2) 5000, 9375, 15 000, 21 875, 30 000, 39 375, 50 000
Number of sensors (N) 100 to 400
Effective Sensing range (Rs) 6 to 35 m
Effective Transmission range (Rtx) 12 to 70 m
Fading Parameter 𝜎 2 to 12 dB
Sensor’s deployment type Uniform Distribution
Sensing model Log-normal Shadowing model
from one end of the boundary to another must be monitored by at least
one sensor, i.e., the deployed sensors must form at least one barrier in
uch a way that every path across the boundaries must be covered by at
east one sensor, this is known as barrier-coverage [15,28]. Similarly,
f every possible intrusion path is covered by at least 𝑘 distinct sensors

of the deployed network, then the network is said to render 𝑘-barrier
coverage. It is imperative to mention that the number of barriers
for a given potential intrusion path depends on the shape and size
of the region, the number of sensors deployed, and the sensing and
transmission capabilities of sensors [29,30].

4. Machine learning model

4.1. Datasets generation

The performance and proficiency of any data-driven approach solely
depend on the dataset’s quality on which the corresponding model
or algorithm is trained. These datasets can be either real data (i.e.,
collected or measured on the field using sensors) or synthetic data
(i.e., derived from simple rules, models, or simulations). The process of
collecting real data is complex and requires huge capital investments.
In contrast, obtaining synthetic data is simple but requires high com-
putational facilities. From the last few years, the use of synthetic data
has increased drastically, and a study by Gartner predicts that its uses
will increase exponentially and overshadow real data by 2030 [31].
We can find the use of synthetic data for machine learning in various
applications such as healthcare [32,33], WSNs [34], and intrusion
detection [19,20,35].

In this study, we have synthetically generated the whole dataset
for training and testing purposes using network simulator NS-2.35, and
the range of various parameters used in the simulation are given in
Table 1. It is assumed that a given number of sensors (N) are spread
randomly and uniformly inside a finite circular RoI for simulation
results. All the sensors are considered to be homogeneous, i.e., they
ave identical sensing, transmission, and computational capabilities.
ote that the sensing and transmission range of sensors follows one of

he most widely used log-normal shadow fading models represented by
q. (2). The sensor’s effective sensing and transmission range denotes
he distances up to which a given sensor can sense and transmit the
ensed information to the intended receiver, respectively. Further, it
s assumed that two given sensors in the network can converse with
ach other if the effective transmission range is at least equal to twice
he effective sensing range, i.e., Rtx ≥ 2Rs, where, Rs and Rtx denote
he effective sensing and transmission range, respectively. Note that
-barrier coverage makes sure that a given random point inside the
ircular region is detected by at least k distinct sensors making the

network robust against sensor failure. Further, k-barrier coverage for
an intrusion path indicates that every possible path is covered by k
distinct sensor while moving from the circumference to the centre of
the circular RoI.
5

4.2. Feature importance

In this study, we have used RReliefF (ReliefF for regression prob-
lems) algorithm to evaluate the relative feature importance weights
[36]. It ranks the features with k nearest neighbour. In this study, we
considered a k of 10 based on the stability of the ranking. It penalises
those features that assign different values to neighbours with the same
target values and simultaneously rewards those that assign different
values to neighbours with different target values. It computes the final
importance weight by using the intermediary weights.

Let 𝑤𝑑𝑦, 𝑤𝑑𝑗 , and 𝑤𝑑𝑦∧𝑑𝑗 be the weights of having different values
for the target (𝑦), features (𝐹𝑗), target and features, respectively. All
these values are initialised to zero, including all the features (i.e., 𝑤𝑗
= 0). Any observation (say 𝑥𝑟) is randomly selected in iterative mode
and searches the corresponding k-nearest observations to update the
weights for each neighbour (say 𝑥𝑞).

𝑤𝑖𝑑𝑦 = 𝑤𝑖−1𝑑𝑦 + 𝛥𝑦(𝑥𝑟, 𝑥𝑞) ⋅ 𝑑𝑟𝑞 (3)

𝑤𝑖𝑑𝑗 = 𝑤𝑖−1𝑑𝑗 + 𝛥𝑗 (𝑥𝑟, 𝑥𝑞) ⋅ 𝑑𝑟𝑞 (4)

𝑤𝑖𝑑𝑦∧𝑑𝑗 = 𝑤𝑖−1𝑑𝑦∧𝑑𝑗 + 𝛥𝑦(𝑥𝑟, 𝑥𝑞) ⋅ 𝛥𝑗 (𝑥𝑟, 𝑥𝑞) ⋅ 𝑑𝑟𝑞 (5)

where 𝛥𝑦(𝑥𝑟, 𝑥𝑞) is given by

𝛥𝑦(𝑥𝑟, 𝑥𝑞) =
|𝑦𝑟 − 𝑦𝑞|

𝑚𝑎𝑥(𝑦) − 𝑚𝑖𝑛(𝑦)
(6)

where 𝑦𝑟 and 𝑦𝑞 are the target values for the observations 𝑥𝑟 and 𝑥𝑞 ,
respectively. The 𝛥𝑗 (𝑥𝑟, 𝑥𝑞) and 𝑑𝑟𝑞 are given by Eqs. (7) and (8) [37].

𝛥𝑗 (𝑥𝑟, 𝑥𝑞) =
|𝑥𝑟𝑗 − 𝑦𝑞𝑗 |

𝑚𝑎𝑥(𝐹𝑗) − 𝑚𝑖𝑛(𝐹𝑗)
(7)

𝑑𝑟𝑞 =
̃𝑑𝑟𝑞

∑𝑘
𝑙=1 𝑑𝑟𝑙

(8)

where ̃𝑑𝑟𝑞 is given by

̃𝑑𝑟𝑞 = 𝑒−
(

𝑟𝑎𝑛𝑘(𝑟,𝑞)
𝑠𝑖𝑔𝑚𝑎

)2

(9)

where 𝑟𝑎𝑛𝑘(𝑟, 𝑞) is the position of the 𝑞𝑡ℎ observation’s position among
the 𝑟𝑡ℎ observation’s, sorted by k distance. 𝑠𝑖𝑔𝑚𝑎 is the scaling factor.
The final relative feature importance weight value is computed after
the completion of the updating of all the intermediate weights.

𝑤𝑗 =
𝑤𝑑𝑦∧𝑑𝑗
𝑤𝑑𝑦

−
𝑤𝑑𝑗 −𝑤𝑑𝑦∧𝑑𝑗
𝑚 −𝑤𝑑𝑦

(10)

where 𝑚 is the number of iterations.

4.3. Feature sensitivity

We can only estimate the relevancy of the features by estimating
the feature importance. We conducted the sensitivity analysis of each
feature by using a Partial Dependence Plot (PDP) through a regression
tree ensemble for detailed impact analysis [38–43]. Through PDP, we
can estimate the partial dependence of the target or response variable
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either on a single feature or on a pair of features. In this study, we
estimated the PDP between the target variable and pair of features by
marginalising the impact of all the remaining features.

Let 𝐹 𝑠 be a subset given by 𝐹 𝑠 = {𝑓1, 𝑓2} of 𝐹𝑗 given by 𝐹𝑗 = {𝑓1, 𝑓2,
⋯, 𝑓𝑗}. 𝐹 𝑐 represent the complementary set of 𝐹𝑗 . The target response,
𝑅(𝑭 ), depends on all the elements present in 𝐹𝑗 .

𝑅(𝑭 ) = 𝑅(𝑭 𝒔,𝑭 𝒄 ) (11)

The partial dependence of the target variable on 𝑭 𝒔 is estimated by
taking the expectation of the response with respect to 𝑭 𝒄 [38].

𝑅𝑠(𝑭 𝒔) = 𝐸𝑐 [𝑅(𝑭 𝒔,𝑭 𝒄 )] (12)

= ∫ 𝑅(𝑭 𝒔,𝑭 𝒄 ) ⋅ 𝑝𝑚𝑐 (𝑭 𝒄 ) ⋅ 𝑑𝑭 𝒄 (13)

where 𝑝𝑚𝑐 (𝑭 𝒄 ) denotes the marginal probability of 𝐹 𝑐 .

𝑝𝑚𝑐 (𝑭 𝒄 ) ≈ ∫ 𝑝(𝑭 𝒔,𝑭 𝒄 ) ⋅ 𝑑𝑭 𝒔 (14)

The final PDP for the feature set 𝐹 𝑠 is given by

𝑅𝑠(𝑭 𝒔) ≈ 1
𝑁𝑇

𝑁𝑡
∑

𝑖=1
𝑅(𝑭 𝒔,𝑭 𝒄

𝒊 ) (15)

here 𝑁𝑇 represent the total number of observations and 𝑭 𝒊 = (𝑭 𝒔
𝒊 ,𝑭

𝒄
𝒊 )

epresents the 𝑖𝑡ℎ observation.

.4. Model setup

Algorithm 1: F-TLBO-ID regression algorithm
Input: Fuzzy Sets and Rules
Output: RMSE, R, and bias (Performance metrics)

1 Initialise the population size 𝑁 and number of generations
2 while number of generations is not reached do
3 Teacher Phase:
4 Find the mean of each design variable, 𝑥𝑚𝑒𝑎𝑛
5 Identify the best solution as teacher
6 [xteacher → x with f(x)max]
7 for range(1,n) do
8 Calculate 𝑇𝐹 ,𝑖 = 𝑟𝑜𝑢𝑛𝑑[1 + 𝑟𝑎𝑛𝑑(0, 1){2 − 1}]
9 𝑥(𝑛𝑒𝑤, 𝑖) = 𝑥𝑖 + 𝑟𝑎𝑛𝑑(0, 1)[𝑥𝑡𝑒𝑎𝑐ℎ𝑒𝑟 - 𝑇𝐹 ,𝑖 ⋅ 𝑥(𝑚𝑒𝑎𝑛)]
10 Calculate 𝑓 (𝑥𝑛𝑒𝑤,𝑖) for 𝑥𝑛𝑒𝑤,𝑖
11 if 𝑓 (𝑥𝑛𝑒𝑤,𝑖) < 𝑓 (𝑥𝑖) then
12 𝑥𝑖 = 𝑥𝑛𝑒𝑤,𝑖
13 End of Teacher Phase
14 Student Phase:
15 Select a learner randomly 𝑥𝑗 such that j ≠ i
16 if 𝑓 (𝑥𝑖) < 𝑓 (𝑥𝑗 ) then
17 𝑥𝑛𝑒𝑤,𝑖 = 𝑥𝑜𝑙𝑑,𝑖 + 𝑟𝑎𝑛𝑑𝑖(𝑥𝑖 − 𝑥𝑗 )
18 else
19 𝑥𝑛𝑒𝑤,𝑖 = 𝑥𝑜𝑙𝑑,𝑖 + 𝑟𝑎𝑛𝑑𝑖(𝑥𝑗 − 𝑥𝑖)

20 if 𝑓 (𝑥𝑛𝑒𝑤,𝑖) < 𝑓 (𝑥𝑖) then
21 𝑥𝑖 = 𝑥𝑛𝑒𝑤,𝑖
22 End of Student Phase

23 return RMSE, R, and bias

TLBO is one of the widely used and robust bio-inspired optimisation
lgorithms [44]. It has been successfully applied in many diverse fields
or optimisation tasks such as electrical engineering [45–48], thermal
ngineering [49], civil engineering [50] and many more [26,51–54].
esides solving purely optimisation tasks, its potential is also evaluated
or forecasting problems. Das and Padhy [55] have proposed a hybrid
egression algorithm based on Support Vector Machine and TLBO (i.e.,
6

SVM–TLBO) for commodity futures index forecasting.
In this investigation, we augmented TLBO with clustering tech-
niques using Fuzzy C-mean clustering [56], a fuzzy counterpart of
K-means or Lloyd’s clustering algorithm [57]. The initial step involves
clustering the input data, organising it in an optimised fashion for
subsequent training. While an increased number of clusters enhances
accuracy, it concurrently leads to heightened computational time-
complexity. The objective is to fine-tune the fuzzy base parameters
by leveraging TLBO to address modelling errors, yielding the optimal
values as the conclusive outcome. Designating 𝑝∗𝑖 as the ultimate opti-
mised value for regression, two of its parameters, namely 𝑥𝑖 and 𝑝𝑜𝑖 , are
determined through the collaborative efforts of TLBO and Fuzzy logic.
The process commences by segregating the data (comprising inputs and
targets) passing through the fuzzy system into training and testing sets,
maintaining a ratio of 70:30, respectively. The second step involves
defining linguistic variables and constructing membership functions,
sets, and rules. Subsequently, the crisp feature matrix (inputs and tar-
get) is converted to a fuzzy model through fuzzification, resulting in an
initial fuzzy model prepared for training using the TLBO algorithm. The
fuzzy part of the system employs the ‘‘Sugeno’’ inference system, which
has demonstrated superior performance compared to ‘‘Mamdani’’. Each
input corresponds to a single feature, resulting in a total of five inputs
(each possessing three membership functions). Furthermore, there are
three rules employing the ‘‘and’’ operator, culminating in an output that
contains the target values for this particular step.

Afterward, the output of the fuzzy model is passed as input to the
TLBO algorithm to adjust the basic fuzzy parameters through its nature-
inspired behaviour based on the 𝑥𝑖 value. This adjustment affects
the membership functions, modifying the Gaussian curve by adjusting
the range and variance according to the fittest solution identified
by the TLBO algorithm. Similar to other bio-inspired algorithms, the
performance of the TLBO algorithm is influenced by the number of
populations and iterations. In this case, the values of population and
iteration are set to 11 and 2000, respectively. The number of decision
variables is also set to 10, with lower and upper bounds of −10 and
10, respectively. The TLBO algorithm consists of two main phases: the
teacher and learner phases. The teacher phase begins by finding the
mean of each designed variable and identifying the best solution within
the population, which becomes the teacher. In the learner phase, the
selected teacher from the previous step shares its knowledge with the
students to enhance the overall knowledge of the class. Consequently,
the fuzzy input model is improved by incorporating the computations
performed by the TLBO algorithm on its membership functions and
parameters. By employing a fuzzy inference engine, the trained data
(both train and test) is evaluated using the fuzzy TLBO model. In order
to calculate the errors, the fuzzy data needs to be transformed back
to its original crisp mode through a process known as defuzzification.
This enables comparing the observed and predicted values, providing
system error metrics such as RMSE and bias. For a detailed algorithm
description, please refer to Algorithm 1. The entire methodology is
depicted in Fig. 3.

5. Results

5.1. Feature importance and sensitivity

We evaluated the relative feature importance weight of each feature
and plotted the feature importance graph (Fig. 4). We found that the
number of sensor nodes emerges as the most relevant feature (with a
feature weight of 0.0281) in predicting the number of 𝑘-barriers. The
effective sensing and transmission range carries an equal importance
weight of 0.0275. Interestingly, we found that the fading parameter is
the least relevant feature (with a feature importance weight of 0.002).
We have not found any outliers in any of the features.

In addition, we carried out the sensitivity analysis of all the features
by using PDP analysis (Fig. 5). We observed that the area of the circular
RoI and the effective sensing range has a negative impact on the target
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Fig. 3. Detailed flowchart of the proposed methodology.
Fig. 4. Bar diagram illustrating the relative feature importance weight or score. The box plot over the bar shows the summary for the corresponding feature.
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variable. Surprisingly, the effective transmission range does not have
any effect of its own. The number of sensor nodes has a fluctuating
positive impact on the target variable, whereas the fading parameter
has no clear trend.

5.2. Model performance

We trained the fuzzy fed TLBO algorithm using the training datasets.
To evaluate how well the model has been trained using the training
7

t

datasets, we estimated the training accuracy by evaluating the model
performance over the training datasets itself. We found the trained
model performs well with R = 1, RMSE = 4.89, and bias = −0.02.

owever, we need to evaluate the model performance over unseen
atasets for an unbiased evaluation. To do so, we evaluate the perfor-
ance of the proposed algorithm over the testing datasets. We fed the

esting datasets into the model input and plotted a linear fit between
he predicted and the observed number of barriers (Fig. 6). We found
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Fig. 5. Sensitivity analysis of the features by using the PDP. We have considered two features simultaneously and evaluated all possible (i.e., ten) combinations illustrated in Figure a-f. We plotted the 2-D (top) and 3-D (bottom)
variation profiles for each pair.
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Fig. 6. Linear fit between the predicted and observed number of barriers. The solid
line represents the best-fit line. The grey shade represents the 95% confidence interval.

that the model performs well over the testing datasets with R = 0.99,
RMSE = 11.32, and bias = −3.66.

Further, to assess the appropriateness of the proposed algorithm,
we performed the residual analysis. We plotted the time-series of the
observed and predicted number of barriers with the 95% confidence
interval (Fig. 7). We calculated the residual by subtracting the fitted
values from the observed values and plotted the residual plot. The
residuals are randomly oriented and do not form any specific pattern,
indicating a good fit. Furthermore, we performed error analysis to know
the distribution of the error by using an error histogram (Fig. 8). To
do so, we plotted the error histogram with 10 bins. The error ranges
from −64.02 (leftmost bin) to 17.05 (rightmost bin). The region on
the left and right of the zero-error line shows the underestimated and
overestimated regions, respectively. Interestingly, the peak of the error
histogram coincides with the zero-error line that indicates a good fit.

6. Discussion

6.1. Ablation experiment

We conducted an input ablation study on the proposed algorithm by
systematically removing or modifying parts of the input features to gain
insights into the model’s prediction process. To accomplish this, we
selected various pairs of input features based on their relative feature
importance scores. We examined a total of 11 input pairs to obtain
a better understanding of the model’s behaviour. We evaluated the
performance of the model on all 11 input pairs under two scenarios: one
utilising only the FIS (Fuzzy Inference System) and the other F-TLBO-
ID (which combines the FIS with the TLBO algorithm). The results are
presented in Table 2.

We observed that the F-TLBO-ID system consistently outperformed
the FIS-only system for all input feature pairs. Furthermore, we dis-
covered that the highest accuracy was achieved when all five input
features were considered. This result can be attributed to the inte-
gration of the TLBO algorithm with the FIS, creating an evolutionary
fuzzy system. This coupling enables the F-TLBO-ID system to adapt
and evolve over time, thereby enhancing its overall performance. By
utilising evolutionary algorithms, these systems optimise their fuzzy
rules, membership functions, and control parameters to better align
with the specific problem at hand. This adaptability empowers them to
navigate changing or dynamic environments effectively. Additionally,
evolutionary fuzzy systems exhibit enhanced robustness by leveraging
fuzzy logic, which enables the representation of linguistic variables
9

and rules to handle uncertainties and imprecise information. When
combined with evolutionary algorithms, these systems further optimise
their fuzzy rules to withstand noise, outliers, and variations in input
data. As a result, they prove invaluable in real-world applications
where data may be incomplete or noisy. Moreover, evolutionary fuzzy
systems automate knowledge acquisition from data, eliminating the
need for explicit programming or manual rule creation. This auto-
mated knowledge acquisition proves particularly beneficial in domains
where human experts may possess an incomplete understanding of the
underlying system. Furthermore, evolutionary fuzzy systems excel at
modelling and controlling real-world problems that exhibit non-linear
and complex behaviour. Traditional approaches often struggle in such
scenarios. However, by combining the capacity of fuzzy logic to handle
linguistic uncertainty with the aptitude of evolutionary algorithms for
exploring complex solution spaces, these systems can more efficiently
tackle non-linearities and complexities [58,59].

6.2. Comparison with fine-tuned benchmark algorithms and other meta-
heuristic algorithms

For a robust analysis, we have compared the performance of the
proposed algorithm with the benchmark machine learning algorithms
(Table 3), namely Automated Machine Learning (AutoML), GPR, Gener-
alised Regression Neural Network (GRNN), Random Forest, Recurrent
Neural Network (RNN), Support Vector Machine (SVM), and Artificial
Neural Network (ANN) [60–66]. We have selected these algorithms
based on their generalisation capabilities in various applications do-
mains of science and engineering, including intrusion detection [19,
67–71]. Instead of using the standalone variants of these algorithms,
we fine-tuned (i.e., applied transfer learning to) all the algorithms,
including AutoML, GPR, GRNN, RF, RNN, SVM, and ANN, to ensure
a fair and comprehensive comparison. To achieve this, we utilised
the initial learning parameters provided by Singh et al. [72] for GPR,
GRNN, RF, RNN, SVM, and ANN, and Singh et al. [1] for AutoML. By
incorporating the fine-tuning process and utilising the initial learning
parameters provided by Singh et al. [1,72], we aimed to improve
the performance and accuracy of these algorithms. Subsequently, we
trained these fine-tuned algorithms over the same training datasets and
evaluated their performance using the test datasets. We found that the
proposed algorithm outperforms all the benchmark algorithms (with R
= 0.99, RMSE = 11.32, and bias = −3.66). In terms of RMSE, GRNN
emerged as the second-best algorithm with R = 0.91, RMSE = 12.03,
and bias = 31.81. Notably, RNN performed the worst among the bench-
mark algorithms. It is worth mentioning that we observed a significant
improvement in the accuracy of these fine-tuned algorithms compared
to their native standalone variants. By employing the approach of fine-
tuning the algorithms with carefully selected initial learning parameters
from previous studies, we established a fair and rigorous comparison,
considering the best possible performance of each algorithm.

To ensure a fair evaluation, we have compared the potential of
TLBO for solving regression tasks with 11 different meta-heuristic al-
gorithms. We carefully selected a balanced combination of established
and newly proposed algorithms, taking into account their relevance to
the regression task of predicting 𝑘-barriers for intrusion detection. In
doing so, we selected Firefly algorithm [73], Particle swarm optimisa-
tion [74], Ant colony optimisation [75], Cultural algorithm [76], Dif-
ferential evolution [77], Biogeography-based optimisation [78], Bees
algorithm [79], Harmony search [80], Bee-Eater hunting strategy al-
gorithm [81], and Weevil damage optimisation algorithm [82]. To
evaluate the performance of these algorithms, we developed corre-
sponding variants of F-TLBO-ID, such as F-Firefly-ID, F-PSO-ID, and
so on, incorporating the specific optimisation techniques from each
algorithm. These variants were trained on the same dataset, and we
assessed their efficiency using widely recognised performance metrics
for regression tasks, including R, RMSE, and bias. The results of our

evaluation can be found in Table 4.
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Fig. 7. Residual analysis of the proposed algorithm. The dotted line represents the RMSE value.
Fig. 8. Image illustrating the error histogram with 10 bins. The heights of each bin show the number of instances of the corresponding error. The vertical line (in red) represents

he zero-error line. The black line shows the Gaussian fit.
After careful analysis, we found that F-TLBO-ID consistently outper-
ormed the other algorithms across the selected performance metrics.
ollowing F-TLBO-ID, F-PSO-ID emerged as the second-best algorithm
n terms of performance metrics. This finding provides strong evidence
or the potential and effectiveness of TLBO in solving the regression
ask of predicting 𝑘-barriers for intrusion detection. We want to em-
hasise that in our evaluation, we ensured a proper balance between
stablished and newly proposed algorithms. By including both well-
stablished algorithms with a strong theoretical foundation and newer
10
algorithms that have shown promise in recent research, we aimed to
provide a comprehensive comparison that takes into account the ad-
vancements in the field while considering the reliability and established
performance of established algorithms.

Furthermore, to assess stability and convergence, we employed an
ANOVA multiple comparison statistical test, which is widely recognised
for its ability to compare means across multiple algorithms. Initially,
we calculated the model errors for all 19 algorithms considered in
our study. For the fine-tuned benchmark algorithms (AutoML, GPR,
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Table 2
Ablation experiment on the input features. SN denotes the number of sensor nodes, ESR denotes the effective sensing range, ETR denotes the effective
transmission range, and FP denotes fading parameter.

Input feature ablation Only FIS F-TLBO-ID (i.e., FIS with TLBO)

R RMSE Bias R RMSE Bias

SN 0.58 37.5038 −2.77 0.58 37.5038 −2.77
SN+ESR 0.84 26.47 0.84 0.85 27.69 3.51
SN+ETR 0.83 31.05 −2.5 0.84 30.87 −1.76
SN+Area 0.82 33.69 −0.46 0.96 14.21 −2.61
SN+FP 0.59 37.39 −0.86 0.61 36.11 −2.08
ESR+ETR 0.71 44.26 −6.99 0.79 36.99 −3.71
SN+ESR+ETR 0.84 23 23.27 0.89 19.18 21.89
SN+ESR+Area 0.91 22.8 2.27 0.97 13.45 1.78
SN+ETR+Area 0.92 21.48 −4.76 0.97 13.01 −1.54
SN+ESR+ETR+Area 0.83 74.63 16.54 0.89 27.38 1.28
SN+ESR+ETR+Area+FP 0.95 16.89 10.87 0.99 11.32 −3.66
Table 3
Comparison of the proposed algorithm with the fine-tuned machine learning algorithms.

Performance metrics Algorithms

F-TLBO-ID AutoML GPR GRNN Random Forest RNN SVM ANN

R 0.99 0.80 0.81 0.91 0.83 0.60 0.75 0.95
RMSE 11.32 2.79 82.37 12.03 41.27 148.93 14.02 19.34
Bias −3.66 42.10 47.22 31.81 39.32 132.61 24.98 −1.39

Note: The values marked in blue and red represents the best and worst observations, respectively.
Table 4
Comparison of the proposed algorithm with its corresponding variants of nature-inspired algorithms. PSO denotes particle swarm optimisation, ACO denotes ant colony optimisation,
DE denotes differential evolution, BBO denotes biogeography-based optimisation, BA denotes bees algorithm, HS denotes harmony search, BEH denotes bee-eater hunting strategy
algorithm, and WDOA denotes Weevil damage optimisation algorithm.
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RNN, RF, RNN, SVM, and ANN), we determined the model error
y averaging the results of 30 independent runs for each algorithm.
onversely, for the meta-heuristic algorithms (F-Firefly-ID, F-PSO-ID,
-ACO-ID, F-Cultural-ID, F-DE-ID, F-BBO-ID, F-BA-ID, F-HS-ID, F-IWO-
D, F-BEH-ID, F-WDOA-ID, and F-TLBO-ID), we conducted multiple
uns of the algorithms, and each run was executed for a sufficient
umber of iterations to ensure algorithm convergence. To achieve
onvergence, we executed each of the 12 algorithms independently 30
imes, allowing a maximum of 2000 iterations per run. This resulted
n a total of 720,000 iterations. We rigorously monitored and verified
hat each algorithm consistently converged to near-optimal solutions.

To guarantee the validity of our analysis, we computed the average
odel error for each algorithm to a Kolmogorov–Smirnov normality

est. The outcomes unequivocally affirmed that the model error distri-
utions for all 19 algorithms adhered to a normal distribution. Based
n this confirmation, we proceeded with a one-way ANOVA multiple
omparison test, employing Tukey’s Honestly Significant Difference
HSD) method as a robust post hoc analysis technique. By utilising
ukey’s HSD method, we were able to compare the means of the
odel errors across different algorithms and derive adjusted p-values.
hese adjusted p-values served as a measure of significance for pairwise
omparisons, enabling us to assess the differences between algorithm
erformance with greater confidence and reliability.

To visually depict the error distribution observed in the ANOVA
nalysis, we generated a highly informative box plot of the ANOVA
odel errors. Fig. 9 showcases this visual representation, offering a
11

lear and intuitive understanding of the range and variability of the b
odel errors associated with each algorithm. This graphical repre-
entation enhances the overall comprehension of the analysis results.
urthermore, we presented the pairwise comparisons in Table 5, which
ffers detailed insights into the statistical significance of our findings.
n this table, we included the adjusted p-values, which serve as reli-
ble indicators of the significance of the observed differences between
lgorithm performances.

To enhance the clarity of our research findings, we have taken an
dditional step by providing an illustrative graphical representation of
he pairwise comparisons. The visual representation, shown in Fig. 10,
ffers a compelling visualisation that clearly demonstrates the superior
erformance of our proposed F-TLBO-ID algorithm (marked in blue)
ompared to the other algorithms considered. Within this graphical
epiction, it is important to note that models exhibiting overlap with
he blue patch indicate a good model fit, suggesting similar perfor-
ance levels. Conversely, models depicted with green lines outperform

hose represented by red lines, emphasising the notable advantages and
igher efficacy of our proposed algorithm.

.3. Comparison of the computational time-complexity

Comparison of the proposed algorithm with a benchmark algorithm,
hether it is an explainable or black-box model or a nature-inspired
pproach, should not solely rely on performance metrics. Disregarding
he computational time-complexity can lead to biased interpretations.
o ensure a fair and comprehensive evaluation, we considered each
lgorithm’s computational time and employed a bubble diagram to

etter visualise and interpret the results (see Fig. 11).
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Fig. 9. Boxplot representation of the model error analysed using ANOVA. The tops and bottoms of each ‘‘box’’ represent the samples’ upper and lower quartiles (the 75th and
25th percentiles). The line in the middle of each box represents the sample median.

Fig. 10. ANOVA multiple comparison test using Tukey’s Honestly Significant Difference (HSD) approach.
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Table 5
Model-wise comparison results of the post hoc tests.

Group A Group B Lower limit A–B Upper limit p-value

Fine-tuned AutoML Fine-tuned GPR −33.899399 5.129741 44.158882 0.999999
Fine-tuned AutoML Fine-tuned GRNN −49.311904 −10.282763 28.746378 0.999990
Fine-tuned AutoML Fine-tuned RF −40.973266 −1.944125 37.085016 0.999999
Fine-tuned AutoML Fine-tuned RNN −213.742504 −174.713363 −135.684222 0.000000
Fine-tuned AutoML Fine-tuned SVM −48.824075 −9.794934 29.234207 0.999995
Fine-tuned AutoML Fine-tuned ANN −82.534016 −43.504875 −4.475734 0.011984
Fine-tuned AutoML F-Firefly-ID −65.306034 −26.276893 12.752248 0.660023
Fine-tuned AutoML F-PSO-ID −80.576557 −41.547416 −2.518275 0.023032
Fine-tuned AutoML F-ACO-ID −78.418153 −39.389012 −0.359871 0.044967
Fine-tuned AutoML F-Cultural-ID −63.596350 −24.567209 14.461932 0.769595
Fine-tuned AutoML F-DE-ID −103.396907 −64.367766 −25.338625 0.000001
Fine-tuned AutoML F-BBO-ID −81.540048 −42.510907 −3.481766 0.016789
Fine-tuned AutoML F-BA-ID −71.398861 −32.369720 6.659421 0.260992
Fine-tuned AutoML F-HS-ID −80.161767 −41.132626 −2.103485 0.026304
Fine-tuned AutoML F-IWO-ID −83.084124 −44.054983 −5.025842 0.009898
Fine-tuned AutoML F-BEH-ID −76.033217 −37.004076 2.025065 0.088096
Fine-tuned AutoML F-WDOA-ID −102.336683 −63.307542 −24.278401 0.000002
Fine-tuned AutoML F-TLBO-ID −80.537343 −41.508202 −2.479061 0.023325
Fine-tuned GPR Fine-tuned GRNN −54.441646 −15.412505 23.616636 0.997325
Fine-tuned GPR Fine-tuned RF −46.103008 −7.073867 31.955274 0.999999
Fine-tuned GPR Fine-tuned RNN −218.872245 −179.843104 −140.813963 0.000000
Fine-tuned GPR Fine-tuned SVM −53.953816 −14.924675 24.104466 0.998211
Fine-tuned GPR Fine-tuned ANN −87.663757 −48.634616 −9.605475 0.001781
Fine-tuned GPR F-Firefly-ID −70.435776 −31.406635 7.622506 0.314351
Fine-tuned GPR F-PSO-ID −85.706298 −46.677157 −7.648016 0.003806
Fine-tuned GPR F-ACO-ID −83.547895 −44.518754 −5.489613 0.008403
Fine-tuned GPR F-Cultural-ID −68.726092 −29.696951 9.332190 0.421950
Fine-tuned GPR F-DE-ID −108.526648 −69.497507 −30.468366 0.000000
Fine-tuned GPR F-BBO-ID −86.669789 −47.640648 −8.611507 0.002632
Fine-tuned GPR F-BA-ID −76.528602 −37.499461 1.529680 0.077073
Fine-tuned GPR F-HS-ID −85.291508 −46.262367 −7.233226 0.004448
Fine-tuned GPR F-IWO-ID −88.213865 −49.184724 −10.155583 0.001429
Fine-tuned GPR F-BEH-ID −81.162959 −42.133818 −3.104677 0.019024
Fine-tuned GPR F-WDOA-ID −107.466425 −68.437284 −29.408143 0.000000
Fine-tuned GPR F-TLBO-ID −85.667085 −46.637944 −7.608803 0.003863
Fine-tuned GRNN Fine-tuned RF −30.690503 8.338638 47.367779 0.999999
Fine-tuned GRNN Fine-tuned RNN −203.459740 −164.430599 −125.401458 0.000000
Fine-tuned GRNN Fine-tuned SVM −38.541311 0.487830 39.516971 0.999999
Fine-tuned GRNN Fine-tuned ANN −72.251252 −33.222111 5.807030 0.218775
Fine-tuned GRNN F-Firefly-ID −55.023271 −15.994130 23.035011 0.995800
Fine-tuned GRNN F-PSO-ID −70.293793 −31.264652 7.764489 0.322698
Fine-tuned GRNN F-ACO-ID −68.135390 −29.106249 9.922892 0.462070
Fine-tuned GRNN F-Cultural-ID −53.313587 −14.284446 24.744695 0.998982
Fine-tuned GRNN F-DE-ID −93.114143 −54.085002 −15.055861 0.000177
Fine-tuned GRNN F-BBO-ID −71.257285 −32.228144 6.800997 0.268468
Fine-tuned GRNN F-BA-ID −61.116097 −22.086956 16.942185 0.891890
Fine-tuned GRNN F-HS-ID −69.879003 −30.849862 8.179279 0.347743
Fine-tuned GRNN F-IWO-ID −72.801360 −33.772219 5.256922 0.194107
Fine-tuned GRNN F-BEH-ID −65.750454 −26.721313 12.307828 0.629445
Fine-tuned GRNN F-WDOA-ID −92.053920 −53.024779 −13.995638 0.000283
Fine-tuned GRNN F-TLBO-ID −70.254580 −31.225439 7.803702 0.325024
Fine-tuned RF Fine-tuned RNN −211.798378 −172.769237 −133.740096 0.000000
Fine-tuned RF Fine-tuned SVM −46.879949 −7.850808 31.178333 0.999999
Fine-tuned RF Fine-tuned ANN −80.589890 −41.560749 −2.531608 0.022933
Fine-tuned RF F-Firefly-ID −63.361909 −24.332768 14.696373 0.783257
Fine-tuned RF F-PSO-ID −78.632431 −39.603290 −0.574149 0.042183
Fine-tuned RF F-ACO-ID −76.474028 −37.444887 1.584254 0.078228
Fine-tuned RF F-Cultural-ID −61.652225 −22.623084 16.406057 0.869870
Fine-tuned RF F-DE-ID −101.452781 −62.423640 −23.394499 0.000003
Fine-tuned RF F-BBO-ID −79.595922 −40.566781 −1.537640 0.031429
Fine-tuned RF F-BA-ID −69.454735 −30.425594 8.603547 0.374319
Fine-tuned RF F-HS-ID −78.217641 −39.188500 −0.159359 0.047714
Fine-tuned RF F-IWO-ID −81.139998 −42.110857 −3.081716 0.019168
Fine-tuned RF F-BEH-ID −74.089092 −35.059951 3.969190 0.144193
Fine-tuned RF F-WDOA-ID −100.392558 −61.363417 −22.334276 0.000005
Fine-tuned RF F-TLBO-ID −78.593218 −39.564077 −0.534936 0.042681
Fine-tuned RNN Fine-tuned SVM 125.889288 164.918429 203.947570 0.000000
Fine-tuned RNN Fine-tuned ANN 92.179347 131.208488 170.237629 0.000000
Fine-tuned RNN F-Firefly-ID 109.407329 148.436470 187.465611 0.000000
Fine-tuned RNN F-PSO-ID 94.136806 133.165947 172.195088 0.000000
Fine-tuned RNN F-ACO-ID 96.295210 135.324351 174.353492 0.000000
Fine-tuned RNN F-Cultural-ID 111.117012 150.146153 189.175294 0.000000
Fine-tuned RNN F-DE-ID 71.316456 110.345597 149.374738 0.000000

(continued on next page)
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Table 5 (continued).
Group A Group B Lower limit A–B Upper limit p-value

Fine-tuned RNN F-BBO-ID 93.173315 132.202456 171.231597 0.000000
Fine-tuned RNN F-BA-ID 103.314502 142.343643 181.372784 0.000000
Fine-tuned RNN F-HS-ID 94.551596 133.580737 172.609878 0.000000
Fine-tuned RNN F-IWO-ID 91.629239 130.658380 169.687521 0.000000
Fine-tuned RNN F-BEH-ID 98.680145 137.709286 176.738427 0.000000
Fine-tuned RNN F-WDOA-ID 72.376679 111.405820 150.434961 0.000000
Fine-tuned RNN F-TLBO-ID 94.176020 133.205161 172.234302 0.000000
Fine-tuned SVM Fine-tuned ANN −72.739082 −33.709941 5.319200 0.196798
Fine-tuned SVM F-Firefly-ID −55.511100 −16.481959 22.547182 0.994009
Fine-tuned SVM F-PSO-ID −70.781623 −31.752482 7.276659 0.294523
Fine-tuned SVM F-ACO-ID −68.623219 −29.594078 9.435063 0.428851
Fine-tuned SVM F-Cultural-ID −53.801417 −14.772276 24.256865 0.998430
Fine-tuned SVM F-DE-ID −93.601973 −54.572832 −15.543691 0.000142
Fine-tuned SVM F-BBO-ID −71.745114 −32.715973 6.313168 0.243261
Fine-tuned SVM F-BA-ID −61.603927 −22.574786 16.454355 0.871958
Fine-tuned SVM F-HS-ID −70.366833 −31.337692 7.691449 0.318389
Fine-tuned SVM F-IWO-ID −73.289190 −34.260049 4.769092 0.173922
Fine-tuned SVM F-BEH-ID −66.238284 −27.209143 11.819998 0.595331
Fine-tuned SVM F-WDOA-ID −92.541750 −53.512609 −14.483468 0.000228
Fine-tuned SVM F-TLBO-ID −70.742409 −31.713268 7.315873 0.296735
Fine-tuned ANN F-Firefly-ID −21.801159 17.227982 56.257123 0.990066
Fine-tuned ANN F-PSO-ID −37.071682 1.957459 40.986600 0.999999
Fine-tuned ANN F-ACO-ID −34.913278 4.115863 43.145004 0.999999
Fine-tuned ANN F-Cultural-ID −20.091476 18.937665 57.966806 0.972888
Fine-tuned ANN F-DE-ID −59.892032 −20.862891 18.166250 0.932722
Fine-tuned ANN F-BBO-ID −38.035173 0.993968 40.023109 0.999999
Fine-tuned ANN F-BA-ID −27.893986 11.135155 50.164296 0.999968
Fine-tuned ANN F-HS-ID −36.656892 2.372249 41.401390 0.999999
Fine-tuned ANN F-IWO-ID −39.579249 −0.550108 38.479033 0.999999
Fine-tuned ANN F-BEH-ID −32.528343 6.500798 45.529939 0.999999
Fine-tuned ANN F-WDOA-ID −58.831809 −19.802668 19.226473 0.958116
Fine-tuned ANN F-TLBO-ID −37.032468 1.996673 41.025814 0.999999
F-Firefly-ID F-PSO-ID −54.299664 −15.270523 23.758618 0.997615
F-Firefly-ID F-ACO-ID −52.141260 −13.112119 25.917022 0.999677
F-Firefly-ID F-Cultural-ID −37.319457 1.709684 40.738825 0.999999
F-Firefly-ID F-DE-ID −77.120014 −38.090873 0.938268 0.065430
F-Firefly-ID F-BBO-ID −55.263155 −16.234014 22.795127 0.994986
F-Firefly-ID F-BA-ID −45.121968 −6.092827 32.936314 0.999999
F-Firefly-ID F-HS-ID −53.884874 −14.855733 24.173408 0.998313
F-Firefly-ID F-IWO-ID −56.807231 −17.778090 21.251051 0.985967
F-Firefly-ID F-BEH-ID −49.756324 −10.727183 28.301958 0.999982
F-Firefly-ID F-WDOA-ID −76.059790 −37.030649 1.998492 0.087474
F-Firefly-ID F-TLBO-ID −54.260450 −15.231309 23.797832 0.997690
F-PSO-ID F-ACO-ID −36.870737 2.158404 41.187545 0.999999
F-PSO-ID F-Cultural-ID −22.048935 16.980206 56.009347 0.991561
F-PSO-ID F-DE-ID −61.849491 −22.820350 16.208791 0.861131
F-PSO-ID F-BBO-ID −39.992632 −0.963491 38.065650 0.999999
F-PSO-ID F-BA-ID −29.851445 9.177696 48.206837 0.999998
F-PSO-ID F-HS-ID −38.614351 0.414790 39.443931 0.999999
F-PSO-ID F-IWO-ID −41.536708 −2.507567 36.521574 0.999999
F-PSO-ID F-BEH-ID −34.485802 4.543339 43.572480 0.999999
F-PSO-ID F-WDOA-ID −60.789268 −21.760127 17.269014 0.904066
F-PSO-ID F-TLBO-ID −38.989927 0.039214 39.068355 0.999999
F-ACO-ID F-Cultural-ID −24.207338 14.821803 53.850944 0.998361
F-ACO-ID F-DE-ID −64.007895 −24.978754 14.050387 0.744711
F-ACO-ID F-BBO-ID −42.151036 −3.121895 35.907246 0.999999
F-ACO-ID F-BA-ID −32.009849 7.019292 46.048433 0.999999
F-ACO-ID F-HS-ID −40.772755 −1.743614 37.285527 0.999999
F-ACO-ID F-IWO-ID −43.695112 −4.665971 34.363170 0.999999
F-ACO-ID F-BEH-ID −36.644205 2.384936 41.414077 0.999999
F-ACO-ID F-WDOA-ID −62.947671 −23.918530 15.110611 0.806412
F-ACO-ID F-TLBO-ID −41.148331 −2.119190 36.909951 0.999999
F-Cultural-ID F-DE-ID −78.829697 −39.800556 −0.771415 0.039752
F-Cultural-ID F-BBO-ID −56.972839 −17.943698 21.085443 0.984495
F-Cultural-ID F-BA-ID −46.831651 −7.802510 31.226631 0.999999
F-Cultural-ID F-HS-ID −55.594557 −16.565416 22.463725 0.993646
F-Cultural-ID F-IWO-ID −58.516914 −19.487773 19.541368 0.964061
F-Cultural-ID F-BEH-ID −51.466008 −12.436867 26.592274 0.999845
F-Cultural-ID F-WDOA-ID −77.769474 −38.740333 0.288808 0.054379
F-Cultural-ID F-TLBO-ID −55.970134 −16.940993 22.088148 0.991780
F-DE-ID F-BBO-ID −17.172282 21.856859 60.886000 0.900561
F-DE-ID F-BA-ID −7.031095 31.998046 71.027187 0.280893
F-DE-ID F-HS-ID −15.794001 23.235140 62.264281 0.841652
F-DE-ID F-IWO-ID −18.716358 20.312783 59.341924 0.946979

(continued on next page)
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Table 5 (continued).
Group A Group B Lower limit A–B Upper limit p-value

F-DE-ID F-BEH-ID −11.665452 27.363689 66.392830 0.584445
F-DE-ID F-WDOA-ID −37.968917 1.060223 40.089364 0.999999
F-DE-ID F-TLBO-ID −16.169577 22.859564 61.888705 0.859353
F-BBO-ID F-BA-ID −28.887954 10.141187 49.170328 0.999992
F-BBO-ID F-HS-ID −37.650860 1.378281 40.407422 0.999999
F-BBO-ID F-IWO-ID −40.573217 −1.544076 37.485065 0.999999
F-BBO-ID F-BEH-ID −33.522310 5.506831 44.535972 0.999999
F-BBO-ID F-WDOA-ID −59.825776 −20.796635 18.232506 0.934568
F-BBO-ID F-TLBO-ID −38.026436 1.002705 40.031846 0.999999
F-BA-ID F-HS-ID −47.792047 −8.762906 30.266235 0.999998
F-BA-ID F-IWO-ID −50.714404 −11.685263 27.343878 0.999936
F-BA-ID F-BEH-ID −43.663498 −4.634357 34.394784 0.999999
F-BA-ID F-WDOA-ID −69.966964 −30.937823 8.091318 0.342352
F-BA-ID F-TLBO-ID −48.167623 −9.138483 29.890658 0.999998
F-HS-ID F-IWO-ID −41.951498 −2.922357 36.106784 0.999999
F-HS-ID F-BEH-ID −34.900592 4.128549 43.157690 0.999999
F-HS-ID F-WDOA-ID −61.204058 −22.174917 16.854224 0.888452
F-HS-ID F-TLBO-ID −39.404717 −0.375576 38.653565 0.999999
F-IWO-ID F-BEH-ID −31.978235 7.050906 46.080047 0.999999
F-IWO-ID F-WDOA-ID −58.281701 −19.252560 19.776581 0.968068
F-IWO-ID F-TLBO-ID −36.482360 2.546781 41.575922 0.999999
F-BEH-ID F-WDOA-ID −65.332607 −26.303466 12.725675 0.658212
F-BEH-ID F-TLBO-ID −43.533267 −4.504126 34.525015 0.999999
F-WDOA-ID F-TLBO-ID −17.229801 21.799340 60.828481 0.902655
Fig. 11. Computational time-complexity analysis of the benchmark algorithms. The radius of the circle indicates the magnitude of the bias value.
Our analysis revealed interesting findings regarding the time-
omplexity of the algorithms under consideration. F-Firefly-ID exhib-
ted the highest time-complexity among all the algorithms, followed
y F-BA-ID. Surprisingly, despite its exceptional performance, the pro-
osed F-TLBO-ID algorithm ranked third in terms of time-complexity.
otably, a distinct segregation was observed between fine-tuned ma-
hine learning algorithms and nature-inspired algorithms in terms of
heir time-complexity. In general, nature-inspired algorithms exhibited
igher time-complexity compared to fine-tuned machine learning algo-
ithms. This observation highlights the trade-off between the computa-
ional cost and the performance achieved by these different algorithmic
aradigms. It is worth mentioning that, among all the algorithms
ompared, the GRNN algorithm demonstrated the least time-complexity
15
while maintaining reasonable performance. By considering both per-
formance and computational time-complexity, we can gain a more
comprehensive understanding of the strengths and limitations of each
algorithm, leading to a more informed and unbiased interpretation of
the results.

6.4. Performance over benchmark datasets

We also evaluated the performance of the proposed algorithm over
publicly available datasets to predict the number of barriers. We con-
sidered the datasets of Singh et al. [20] downloaded from UCI Ma-
chine Learning Repository (https://archive.ics.uci.edu/dataset/715/lt+
fs+id+intrusion+detection+in+wsns). This dataset consists of four fea-
tures (i.e., area, sensing range, transmission range, and sensors) to

https://archive.ics.uci.edu/dataset/715/lt+fs+id+intrusion+detection+in+wsns
https://archive.ics.uci.edu/dataset/715/lt+fs+id+intrusion+detection+in+wsns
https://archive.ics.uci.edu/dataset/715/lt+fs+id+intrusion+detection+in+wsns
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predict the number of barriers. They proposed the LT-FS-ID algorithm
over these datasets and reported the performance metrics of R = 0.98,
RMSE = 6.47, and bias = 12.35. We applied the F-TLBO-ID algorithm
over this data and found that it performs well with R = 0.84, RMSE =
36.24, and bias = −7.17. Hence, the proposed algorithm has good gen-
ralisation capabilities and can be extended to other intrusion detection
roblems.

.5. Limitations

Although F-TLBO-ID outperforms the benchmark algorithms in
erms of accuracy, it has relatively higher computational time-
omplexity. However, once the model is trained, then the prediction
f the barriers takes little time, which is essential for fast IDP. Further,
he aging effect of the sensors may result in a performance mismatch.
his can be easily avoided by periodic retraining of the proposed model
r through routine maintenance of the deployed sensors.

. Conclusion

This study presents F-TLBO-ID, a novel fuzzy-fed TLBO regression
lgorithm for fast IDP using WSNs. We considered synthetic features
i.e., area of the RoI, effective sensing range, effective transmission
ange, number of sensor nodes, and fading parameter) as the potential
eatures to map the number of 𝑘-barriers using the proposed algorithm.
ased on our intensive mechanism following conclusion can be drawn;

• The number of sensor nodes turns out to be the most relevant
feature in predicting the number of 𝑘-barriers for fast intrusion
detection and prevention. It is followed by effective sensing and
transmission range with equal weightage.

• The number of sensor nodes has a fluctuating positive impact on
the 𝑘-barriers and area of the RoI, and the effective sensing range
has a negative impact.

• The proposed F-TLBO-ID regression algorithm performs excep-
tionally well in terms of accuracy.

• F-TLBO-ID outperforms various benchmark and nature-inspired
algorithms in accurately predicting the 𝑘-barriers.

• Relatively, F-TLBO-ID has high computational time-complexity.

Further, to assess the generalisation capability of the F-TLBO-ID
algorithms, we evaluated its performance over the publicly available
datasets and found satisfactory performance. This study is a step to-
wards an evolutionary regression-based solution for fast IDP using
WSNs. The proposed scheme can be implemented for near-real-time
surveillance applications.
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