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We propose a hybrid machine learning algorithm (i.e., P2CA− PSO−ANN) to model malaria outbreak in 
three districts (Barmer, Bikaner, and Jodhpur) of Rajasthan in the Western India. We have used different 
meteorological variables (i.e., relative humidity, temperature, and rainfall) as input features to predict malaria. 
We have also considered the combined impact of these variables through a linear data fusion. We then extract the 
uncorrelated information from the feature set by applying Probabilistic Principal Component Analysis (P2CA). 
We trained the fully connected feed-forward Artificial Neural Network (ANN) by optimising its hyperparameters 
iteratively through a bio-inspired optimisation algorithm (Particle Swarm Optimisation). We train and evaluate 
the performance of this algorithm using monthly meteorological variables from 2009 - 2012. This accurately 
predicts the malaria cases with the coefficient of correlation (R = 0.99), and Root Mean Square Error (RMSE 
= 1.76). Finally, we compare our model with different benchmark algorithms (Generalised Regression Neural 
Network (GRNN), Gaussian Process Regression (GPR), Support Vector Regression (SVR), Random Forest, and 
Radial Basis Neural Networks (RBNN)) in terms of accuracy. We observed the performance of hybrid machine 
learning model relatively high. This study can be used as an early warning intelligent system to predict the 
malaria outbreaks solely from meteorological data.
1. Introduction

The linkage between climatic variables and transmission (or spread) 
of vector-borne diseases, for example, malaria, dengue fever, lyme, 
and scrub typhus is well established. These diseases are either season-

specific or erupt because of extreme events such as flood, drought etc. 
(Patz, 2002). Short-term changes in the climatic variables because of 
global warming has intensified the need of studying climate change and 
disease transmission concurrently (Rocklöv & Dubrow, 2020).

Among the various vector-borne diseases, malaria has caused a sig-

nificant health burden globally (Caminade et al., 2014). It is a mosquito-

borne disease caused by the different species of the Plasmodium proto-

zoan parasites, namely P. falciparum, P. vivax, P. malariae, P. knowlesi, 
P. ovale wallikeri, and P. ovale curtisi. P. falciparum and P. vivax cover 
a larger portion of the cases (≈ 95%) in the world (Garrido-Cardenas, 
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González-Cerón, et al., 2019, Garrido-Cardenas, Cebrián-Carmona, et 
al., 2019). It is among the top ten causes for death in lower-income 
countries. According to the World Health Organization (WHO), from 
2000 to 2019, about 1.5 billion malaria cases and 7.6 million malaria 
deaths were reported. There were approximately 229 million malaria 
cases in 2019 in about 87 countries (WHO, 2020). Globally, only 29 
countries contribute nearly 95% of the total malaria cases in the world. 
Among these, Nigeria contributes the highest percentage (≈ 27%), the 
Democratic Republic of the Congo (≈ 12%), Uganda (≈ 5%), Mozam-

bique (≈ 4%) and Niger (≈ 3%). The South-East Asia Region (SEAR) 
contributes about 3% to the global malaria cases of which India alone 
contributes about (≈ 60%) followed by Indonesia (30%) and Myanmar 
(10%). India has reported a reduction in malaria cases from 20 million 
in 2000 to nearly 5.6 million in 2019 (WHO, 2020). Despite this malaria 
is still a major healthcare challenge in India.
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Fig. 1. Co-keywords burst based bibliometric analysis of the keywords “{malaria} AND {Climate}”. Total 2117 research publications published during 1991 to 2022 
(till February 10, 2022) in WoS database.
In India, malaria is more prevalent in north-eastern states, i.e., 
Orissa, Chhattisgarh, and Jharkhand. After the eradication attempts in 
the late 1970s, malaria has been reported in the arid regions of Gujarat 
and Rajasthan (Tyagi et al., 1995, Akhtar & McMichael, 1996). In Ra-

jasthan, the major epidemics have occurred in the desert regions such 
as; Barmer, Bikaner, Jaisalmer, Jodhpur, Pali, and Sri Ganganagar.

Persistence of malaria in India is because of its huge geographic and 
climatic variability, which provides suitable ecological conditions for 
many parasites (Sarkar et al., 2019). Climatic factors enhance the breed-

ing sites for mosquitoes (Haque et al., 2010). Mosquitoes morphological 
processes (e.g., growth) are highly dependent on ambient temperature, 
humidity, and stagnant water bodies. Rainfall has received a lot of at-

tention as a key factor in rising mosquito breeding sites. The breeding 
areas can be limited by drought or severe flooding in the region (Cam-

inade et al., 2019, Kelly-Hope et al., 2009, Alonso et al., 2011). The 
semi-arid and arid regions of Western India are considered as an unpre-

dictable malaria zones with low and high incidences mainly affected by 
the rainfall (Mathur et al., 1992). As a result, malaria outbreaks caused 
due to climatic conditions may results disease transmission and even-

tually complicate the situation (Jetten et al., 1996, Hulme et al., 1996, 
Sutherst, 1998).

Owing to the lack of medical facilities, especially during the time 
of pandemic, the symptoms of malaria are much more severe (Di Gen-

naro et al., 2020). Preventing or reducing the risk factor for malaria 
is extremely difficult, particularly in lower-income countries. The tech-

nology can provide alternative solutions by allowing for early warning 
mechanisms to monitor the spread of disease and advance management 
of treatment facilities to ensure a more timely health services that can 
save lives. The availability of any predictive model will not only help 
healthcare services but also to avoid or reduce the large-scale spread of 
2

diseases (Modu et al., 2017).
This study proposes a hybrid machine learning algorithm to predict 
the malaria cases using meteorological variables. We selected tempera-

ture, rainfall, and relative humidity as the potential input features. To 
study the combined effect of these meteorological variables, we gener-

ated some additional features using linear data fusion of two features. 
Finally, we train and evaluate the performance of the machine learning 
model to accurately predict the malaria cases. To the best of our knowl-

edge, no such studies have been conducted to assess the combined effect 
of relative humidity with temperature, temperature with rainfall, rela-

tive humidity with rainfall, along with the individual climate variables 
on the malaria cases using a hybrid machine learning approach.

2. Related work

Machine learning models have been setup using the meteorological 
variables to accurately predict malaria cases. Fig. 1 shows the biblio-

metric analysis using the keywords malaria and climate. The number 
of publications has increased drastically in the last two decades, with 
only 21 publications in 2001 to 152 publications in 2021. In total, we 
found 2117 research publications from 1991 to 2022 in the Web of 
Science (WoS) database. Researchers have traditionally used linear re-

gression and time series approaches (Srimath-Tirumula-Peddinti et al., 
2015, Jones et al., 2007, Kumar et al., 2020).

Modu et al. (2017) have used the maximum and minimum tempera-

ture, precipitation, relative humidity, solar radiation, and wind speed as 
the potential climatic variables for predicting malaria outbreaks. They 
reported that the temperature, and relative humidity are positively cor-

related (Pearson’s cross-correlation) to the number of malaria cases. 
Modu et al. (2017) compared and evaluated the performance of seven 
regression-based machine learning algorithms; linear regression, logis-
tic regression, decision tree, support vector machine, optimised Support 
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Fig. 2. Malaria prone districts (Barmer, Bikaner, and Jodhpur) of Rajasthan, India. Map on the right shows the accumulated malaria cases from 2009 to 2017.
vector machine, naive Bayes, K-nearest neighbours, and k-mean. They 
observed that optimised Support vector machine outperforms all the 
other machine learning algorithms through 10-fold cross-validation. 
Recently, Kim et al. (2019), proposed a weather-based malaria pre-

diction model using weekly time-series temperature and precipitation 
data. They reported the model prediction accuracy (R > 0.8) is higher 
for short-term (1 or 2 week ahead). Thakur and Dharavath (2019) used 
the climatic variable along with the clinical data to predict the malaria 
cases. They used rainfall, relative humidity, temperature, and vegeta-

tion index as environmental variables and trained an ANN model for 
accurate mapping of malaria cases. They reported an error varying from 
18% to 117%. More recently, Nkiruka et al. (2021) proposed a malaria 
incidence classification model and compared their results with differ-

ent machine learning models. They considered three climatic variables 
such as precipitation, temperature, and surface radiation for mapping 
the number of malaria cases. Temperature has a strong linear relation-

ship with malaria cases among all the three climatic variables. They 
have used k-mean learning to clean and remove the outliers and XG-

Boot ensemble learning approach for classification. They reported that 
the association between the climatic variables and malaria cases varies 
from one geographic location to another.

All the models discussed above only consider the individual effect of 
climatic variables. This study aims to strengthen the prediction accuracy 
of previous studies by extracting the maximum information from the 
climatic variables using a hybrid machine learning algorithm.

3. Study area

We have selected three districts, Bikaner, Barmer, and Jodhpur of 
Rajasthan province in the northwestern India to predict the malaria 
outbreak (Fig. 2). These districts are chosen based on the high num-

ber of malaria cases and data availability. Tyagi et al. (1995) reported 
that after the construction of three major canal systems, the Gang, the 
Bhakra Sirhind feeder canal, and the Indira Gandhi canal have provided 
a favourable ecology for malaria breeding.

Malaria outbreak in the study area usually occurs during the Indian 
Summer Monsoon period (June-September) (Lingala et al., 2020, Kumar 
et al., 2022, Parihar et al., 2022). During the monsoon period, rainfall, 
temperature, relative humidity, and waterlogging provide a favourable 
condition for the parasite growth in mosquito (Arab et al., 2014). Fig. 3

show the time series of malaria outbreak in Bikaner, Barmer, and Jodh-
3

pur from 2019 - 2014.
Fig. 3 shows a cyclic behaviour of malaria outbreak in all three dis-

tricts. The disease starts to spread about a month after the onset of 
monsoon in June. It reaches to its peak in August and September and 
then starts to decrease.

The annual average minimum and maximum temperature in the 
study area varies between 23◦ to 40 ◦C. The annual average rainfall 
varies between 313 mm to 675 mm for the western and eastern part 
of Rajasthan, respectively. The average annual relative humidity varies 
from 45% to 50%.

4. Material and methods

4.1. Data

We obtained the monthly malaria cases of P. vivax and P. falci-

parum of three districts (Barmer, Bikaner, Jodhpur) for a period be-

tween January 2009 to December 2012 from National Vector Borne 
Disease Control Programme (NVBDCP), New Delhi (Lingala, 2017). The 
corresponding monthly meteorological data; temperature, rainfall and 
relative humidity (at 8:30 IST and 5:30 IST) is downloaded from the In-

dian Meteorological Department (IMD) (https://mausam .imd .gov .in/).

4.2. Features processing

The performance of any machine learning model depends on feature 
pre-processing (Hall et al., 1971). It is highly desirable to adopt essen-

tial pre-processing steps (specially for numerical features) to develop a 
efficient and robust machine learning model (Alshdaifat et al., 2021).

4.2.1. Outliers technique

We used Median Absolute Deviation (MAD) method to identify and 
remove the outliers present in the data (Fig. 4). We estimated the me-

dian of absolute deviation from the median and finally the MAD is 
calculated by multiplying it by an empirically derived constant (Leys 
et al., 2013).

𝑀𝐴𝐷 = 𝐵 ⋅𝑴
(||||𝐴−𝑴(𝐴)

||||
)

(1)

where 𝑀 is the median of the series 𝐴 consisting 𝑛 observation and 𝐵
is an empirical constant whose value is derived from

−1

𝐵 =

(
√
2 ⋅ 𝑒𝑟𝑓𝑐𝑖𝑛𝑣(3∕2))

(2)

https://mausam.imd.gov.in/
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Fig. 3. Time series (form 2009 to 2012) of the malaria cases in three districts (Bikaner, Barmer, and Jodhpur) of Rajasthan in the Western India. The shaded region 
in grey colour represents the monsoon period (i.e., JJAS; June-July-August-September).

Fig. 4. Detailed workflow illustrates the procedure of input features selection, machine learning models, and result analysis.
where 𝑒𝑟𝑓𝑐𝑖𝑛𝑣 represents the inverse complementary error function. Fi-

nally, the outliers are identified by using the following criterion

(
𝑀 − 3 ⋅𝑀𝐴𝐷

)
<𝐴 <

(
𝑀 + 3 ⋅𝑀𝐴𝐷

)
(3)
4

Any values that lies outside this range are marked as outlier.
4.2.2. Feature generation and data fusion

Initially, we select three meteorological variables; temperature, rain-

fall and relative humidity as the potential features to train the machine 
learning model. These features will only evaluate the effect of individual 
measures. To study the effect of combined measures, we have created 

three additional features through linear data fusion technique, such as 
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relative humidity with temperature, temperature with rainfall, and rel-

ative humidity with rainfall (Fig. 4).

4.2.3. Feature importance and correlation

The goodness of a machine learning model depends on the relevancy 
of features from which it is trained on. The relevancy of any feature can 
be assessed by estimating the feature importance score. Higher the fea-

ture importance more relevant is the feature. We used the regression 
tree ensemble technique to estimate the feature importance (Singh et 
al., 2022a, 2022b). We used the Least-Squares Boosting (LSBoost) al-

gorithm to train a regression ensemble. In doing so, we created the 
regression ensemble by boosting hundred regression trees. This step is 
based on an assumption that the regression tree is a weak learner (with 
unity learning rate). Further, we estimated the feature importance of 
each feature in a tree by summing all the changes in the node risk oc-

curred because of splits on every feature. The final estimate is obtained 
by diving the changes with the number of branch nodes, 𝑁𝑏𝑟𝑎𝑛𝑐ℎ. The 
node risk change for the parent node is calculated by subtracting the to-

tal risk of the two children (𝑅𝑐1 +𝑅𝑐2) from the parent risk (𝑅𝑝) given 
as;

Δ𝑅 =
𝑅𝑝 − (𝑅𝑐1 +𝑅𝑐2)

𝑁𝑏𝑟𝑎𝑛𝑐ℎ

(4)

The risk at individual node (𝑅𝑖) is calculated according to

𝑅𝑖 = 𝑃𝑖 ⋅𝑀𝑆𝐸𝑖 (5)

where 𝑃𝑖 represents the node probability and 𝑀𝑆𝐸𝑖 represents the 
mean square error of the node 𝑖.

Apart from feature importance, we also estimated the feature asso-

ciation matrix to identify any correlated feature. Presence of any highly 
correlated features makes the machine learning model highly unstable 
and sensitive (Toloşi & Lengauer, 2011, Singh, Gaurav, et al., 2021).

4.2.4. Feature sensitivity

Feature importance graph tell us about the relative importance of 
each feature. To identify whether these features have negative or pos-

itive impact on the machine learning model, we performed the sensi-

tivity analysis of all the features using Partial Dependency Plot (PDP) 
(Friedman, 2001, Singh, Nagar, et al., 2021) and Individual Conditional 
Expectation (ICE) Curve (Goldstein et al., 2015, Singh et al., 2020).

PDP evaluates the partial dependence of predictand (i.e., malaria 
cases) on a single feature by marginalising the effect of all other fea-

tures. Let 𝑿𝒔 be a singleton represented by 𝑿𝒔 = {𝑥𝑠1} of the whole 
feature set, 𝑿 represented by 𝑿 = {𝑥1, 𝑥2, ⋯, 𝑥𝑚}. Consider 𝑿𝒄 be the 
complementary set of 𝑿𝒔 in the feature set 𝑿. The predictand response, 
𝑓 (𝑿), depends on all the elements in the feature set 𝑿 according to;

𝑓 (𝑿) = 𝑓 (𝑿𝒔,𝑿𝒄 ) (6)

The partial dependence of the predictand on 𝑿𝒔 is calculated by the 
expectation of the predictand response with respect to 𝑿𝒄 .

𝑓𝑠(𝑿𝒔) =𝐸𝑐[𝑓 (𝑿𝒔,𝑿𝒄 )] (7)

= ∫ 𝑓 (𝑿𝒔,𝑿𝒄 ) ⋅ 𝑝𝑐(𝑿𝒄 ) ⋅ 𝑑𝑿𝒄 (8)

where 𝑝𝑐(𝑿𝒄 ) represent the marginal probability of 𝑿𝒄 given by

𝑝𝑐(𝑿𝒄 ) ≈ ∫ 𝑝(𝑿𝒔,𝑿𝒄 ) ⋅ 𝑑𝑿𝒔 (9)

The final partial dependence estimate (i.e., the average marginal effect) 
for 𝑿𝒔 is given by

𝑠 𝒔 1
𝑁𝑡∑

𝒔 𝒄
5

𝑓 (𝑿 ) ≈
𝑁𝑡 𝑖=1

𝑓 (𝑿 ,𝑿
𝒊
) (10)
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where 𝑁𝑡 is the total number of observations and 𝑿𝒊 = (𝑿𝒔

𝒊
, 𝑿𝒄

𝒊
) rep-

resents the 𝑖𝑡ℎ observation. The ICE is calculated by dis-aggregating the 
average effect of Equation (10) according to

𝑓𝑠
𝑖
(𝑿𝒔) = 𝑓 (𝑿𝒔,𝑿𝒄

𝒊
) (11)

Finally the level effect is removed by

𝑓𝑠
𝑖,𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑

(𝑿𝒔) = 𝑓 (𝑿𝒔,𝑿𝒄

𝒊
) − 𝑓 (𝑚𝑖𝑛(𝑿𝒔),𝑿𝒄

𝒊
) (12)

This is done for better visualisation of the cumulative effect of 𝑿𝒔. Gen-

erally, ICE is used for analysing the presence of any heterogeneity at 
any individual observation that had been obscure by the averaging ef-

fect of PDP.

4.3. Artificial neural network model

ANN is based on the concept and functionality of biological neu-

ron present in human brain. The fundamental unit of ANN is artificial 
neuron which is a mathematical model that mimics the behaviour of 
biological neuron. Information is passed into the artificial neurons and 
it is processes using mathematical function to generate the final output 
(Asteris et al., 2017). To exactly mimic the random behaviour of biolog-

ical neurons, the information is multiplied with a weight value before 
passing it to the artificial neuron. Several artificial neurons are grouped 
together to form ANN. Generally for setting up an ANN model, we need 
to define three things; (i) architecture of the network, (ii) mathemati-

cal function that describe the models, and (iii) training algorithm. We 
have discussed these in the succeeding subsections.

4.3.1. Feed forward artificial neural network (FF-ANN)

We proposed an architecture of a 6-20-1 fully connected FF-ANN 
(Fig. 5). In this type of structure, there is no feedback (i.e., loop). The 
information flows only in one direction i.e., from input towards the out-

put. The neurons present in the same layers are not connected to each 
other, but they are connected with the neurons present in the previous 
and the upcoming layers. The fully connected feed forward ANN archi-

tecture for the prediction of malaria cases consists of single hidden layer 
with twenty neurons (Fig. 5).

4.3.2. Activation function at each layer

The selection of activation function at each layer strongly affects 
the model output (Karlik & Olgac, 2011). Generally, non-linear trans-

fer functions are used in hidden layer. In this study, we have used the 
hyperbolic tangent sigmoid transfer function (Vogl et al., 1988) at the 
output of hidden and output layer as depicted in Fig. 5. Mathematically 
it is expressed as;

𝑓 (𝑛) = 𝑡𝑎𝑛𝑠𝑖𝑔(𝑛) = 2(
1 + 𝑒−2⋅𝑛

)
− 1

(13)

This function is analogous to hyperbolic tangent function, it only dif-

fers in terms of computational time complexity. The execution time of 
f(n) is faster than the hyperbolic tangent function with very little vari-

ation in the numerical output. This is a trade-off for the feed-forward 
ANN, where speed is the primary interest than the exact shape of the 
transfer function (Dorofki et al., 2012). We use a linear (or identity) 
activation function at the output of the input layer.

4.3.3. Training algorithm

Various training algorithm such as Levenberg-Marquadt backpropa-

gation, scaled conjugated gradient backpropagation, and Bayesian reg-

ularization backpropagation to optimise a multivariate function exist 
(Corte-Valiente et al., 2017). However, none of these can guarantee 
global optimal solution. For mapping number of malaria cases, we 
found that Levenberg-Marquadt backpropagation technique provides 

more promising results as compared to other algorithms. It is an it-
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Fig. 5. Architecture of 6-20-1 backward propagation based fully connected FF-ANN. It consists of six inputs, twenty neurons in the hidden layer and one output.
erative algorithm that computes the optimal minima of a multivariate 
function to update the weight and bias values (Equation (14)).

𝑤𝑘+1 =𝑤𝑘 − [𝑱𝑻
𝑱 + 𝜇𝑰]−1𝑱𝑻

𝒆 (14)

where 𝑱 represents the Jacobian matrix and 𝜇 is a scalar coefficient. It 
contains the first derivatives of the network errors with respect to the 
weights and biases. 𝒆 represents the vector of network errors. Finally, 
we randomly divided the data into two parts in a 60:40 ratio for train-

ing, and testing of the FF-ANN 6-20-1 architecture, respectively (Fig. 4).

4.4. Hybrid model

We proposed a novel hybrid algorithm based on the coupling of 
Probabilistic Principal Component Analysis (P2CA), Particle Swarm Op-

timisation (PSO), and ANN, such as P2CA− PSO−ANN to predict the 
malaria cases using meteorological variables. In the succeeding subsec-

tions, we have discussed complete coupling process (Fig. 6).

4.4.1. Probabilistic principal component analysis

We applied P2CA as a feature pre-processing step where the aim 
was to extract the most uncorrelated information from the input fea-

ture set. P2CA efficiently estimate the principal axis even if some or 
all the data vector consist of single or more missing values by using 
expectation-maximisation (EM) algorithm (Tipping & Bishop, 1999). 
We reconstructed the data by considering the first three Principal Com-

ponents (PCs) of P2CA, they consist of 95% of the variance.

4.4.2. Particle swarm optimisation

PSO algorithm is based on swarm intelligence that was proposed in 
1995 by Kennedy and Eberhart (1995). It has fewer parameters and the 
complete optimisation process is governed by iterating formula which 
reduces the computation burden. It has very high efficacy in optimising 
various theoretical and practical problems (Zhang et al., 2018, Singh, 
Sharma, et al., 2021). In general it is composed of two equations for 
updating the position and velocity iteratively (Equations (15) and (16)).
6

𝑣𝑡+1
𝑖𝑛

= 𝑣𝑡
𝑖𝑛
+ 𝑐1 ⋅ 𝑟1 ⋅ (𝑃 𝑡

𝑏𝑒𝑠𝑡
− 𝑥𝑡

𝑖𝑛
) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔𝑡𝑏𝑒𝑠𝑡 − 𝑥𝑡

𝑖𝑛
) (15)
Table 1

Simulation parameters of PSO for optimising 
weights and biases.

Parameter Value

Swarm size 6

Maximum iteration (𝑡𝑚𝑎𝑥) 50

𝑐1 2

𝑐2 4-𝑐1
Fitness function MSE

𝑥𝑡+1
𝑖𝑛

= 𝑥𝑡
𝑖𝑛
+ 𝑣𝑡+1

𝑖𝑛
(16)

where 𝑃𝑏𝑒𝑠𝑡 is the particle (or swarm) best solution, 𝑔𝑏𝑒𝑠𝑡 is the global 
best solution, 𝑐1 is the cognitive component, 𝑐2 is the social component, 
𝑟1 and 𝑟2 are the random number between 0 and 1, 𝑥𝑡

𝑖𝑛
is the current 

particle position, 𝑣𝑡
𝑖𝑛

is the current particle velocity, 𝑣𝑡+1
𝑖𝑛

is the velocity 
at the next iteration, and 𝑥𝑡+1

𝑖𝑛
is the position at next iteration.

As illustrated in Fig. 6b, each particle iterates the position and veloc-

ity information from its own best solution (𝑃𝑏𝑒𝑠𝑡) to global best solution 
(𝑔𝑏𝑒𝑠𝑡). 𝑂

𝑜𝑝𝑡

𝑡ℎ𝑒
is the targeted theoretical optima. After affected by various 

factors (particle memory and swarm influence), the velocity changes 
from 𝑣𝑡

𝑖𝑛
to 𝑣𝑡+1

𝑖𝑛
with a position change from 𝑥𝑡

𝑖𝑛
to 𝑥𝑡+1

𝑖𝑛
. It is worthy to 

mention that the particle memory and swarm influence lines are paral-

lel the 𝑥𝑡
𝑖𝑛

to the 𝑃𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡, respectively. The algorithm will keep 
iterating and updating the position and velocity until it reaches more 
closer to the theoretical optima (Fig. 6c).

4.4.3. P2CA− PSO−ANN
To couple P2CA, and PSO with ANN, we have considered 6-6-1-1 

ANN architecture as illustrated in Fig. 6a. The first hidden layer consists 
of six neurons and the second hidden layer consists of single neuron. 
Both these layers are followed by a tangent sigmoid transfer function 
(i.e., tansig). The input and the output layers use linear activation func-

tion (i.e., purelin). The P2CA reconstructed data are fed to the model 
input, and the weights and biases are optimised iterately by PSO. The 

simulation parameters of PSO are given in Table 1. Similar to the FF-
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Fig. 6. (a) Schematic representation of the hybrid model. (b) Position and velocity updates in PSO. (c) Flowchart for optimising the weights and biases of the ANN.
ANN, we have randomly divided the data into two parts in a 60:40 
ratio for training, and testing of the proposed hybrid algorithm, respec-

tively.

5. Results and discussion

5.1. Feature importance, correlation, and sensitivity

We plot the relative feature importance score of each feature 
(Fig. 7a). We found relative humidity to be the single most impor-

tant feature with the highest importance score amongst all the features. 
Higher the value of importance score, the more relevant is the feature in 
the prediction of malaria cases. It is followed by the relative importance 
score of the combined measure of relative humidity and temperature 
7

(i.e., RH + Temperature). The measure of relative humidity and rain-
fall (i.e., RH + Rainfall) has the least importance score. It is important 
to highlight that the relative importance of temperature is less than 
the combined features that includes temperature (i.e., RH + Temper-

ature and Temperature + Rainfall). This indicates when temperature 
variable is combined with other meteorological variables, it becomes 
more relevant. Further, we plot the feature association matrix (Fig. 7b). 
We observed no highly correlated features, this indicates model is less 
susceptible to instability.

We have plotted the Partial Dependency Plot (PDP) (shown in red 
line) and Individual Conditional Expectation (ICE) curves in Fig. 8. We 
observed no clear impact (or trend) of features with the malaria cases. 
Overall we found a fluctuating positive impact for RH + Temperature 
and Temperature + Rainfall and a fluctuating negative impact for RH 
and RH + Rainfall. We only observed a slight variation in the case of 

temperature.
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Fig. 7. (a) Bar graph shows the relative importance score of each feature, (b) shows the feature association matrix.

Fig. 8. Feature sensitivity analysis using PDP (in red line) and ICE curves (in grey lines).
5.2. Performance of the FF-ANN model

Once we trained the FF-ANN model using 60% of the data (N = 53), 
we evaluated the performance of the model on training data itself to re-

port the training accuracy/statistics. We plot a linear regression curve 
between the estimated and observed values (Fig. 9a). To evaluate the 
performance of the model, we used R, RMSE, bias as the performance 
metrics. A detail of the performance metrics has been explained in Ap-

pendix A. The model performs reasonably well with R = 1, RMSE = 
0, and zero bias. However, testing the model performance only on the 
training data is insufficient and result into bias. To evaluate its gener-

alisation capability, we test the model performance on unseen data. We 
used the remaining 40% of the data (N = 35) for testing. We found 
8

that the trained model performs marginally on the test datasets with R 
= 0.72, RMSE = 62.23, and bias of -19.28 with moderate scattering 
(Fig. 9b). We found that few points lies outside the 95% confidence in-

terval resulting in either overestimation or underestimation (marked in 
red circles).

To understand the errors and its impact on the performance of the 
FF-ANN model, we calculate the error from L1 norms by discarding the 
absolute part and plotted the error histogram with 10 bin size (Fig. 10). 
The shades of red and green correspond to the error associated with 
the training, and testing phase. Vertical line shown in orange repre-

sents the zero-error line. The total error ranges from -113.4 (left most 
bin) to 137.7 (right most bin). The negative sign indicates overestima-

tion and the positive sign indicates underestimation. The training errors 
is more centric in nature and lies near the zero-error line followed by 

the testing error. The overall error follows a Gaussian distribution with 
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Fig. 9. FF-ANN predicted malaria plotted against the observed cases. (a) for training dataset, and (b) for testing dataset.
Fig. 10. Error histogram analysis for FF-ANN with 10 bin size. Regions on the 
left and right of the zero error line (in orange) represent overestimation and 
underestimation region, respectively.

a peak at zero error line. This indicates for most of the instances out-

put is close to the observed value with occasional underestimation and 
overestimation.

We performed residual analysis to estimate the appropriateness of 
the FF-ANN approach (Fig. 11). For a good fit model, the residuals 
must be randomly scattered without following any deterministic pat-

tern. In other words, the residual must be consistent with the stochastic 
error. Fig. 11, we observe that although the residuals follow random 
pattern for both the phases (i.e., training and testing) but a large num-

ber of residuals lies outside the testing RMSE line. Hence, the models 
fail to attain an accuracy equivalent to the training phase over the test-

ing dataset, indicating a case of slight overfitting.

5.3. Performance of the P2CA− PSO−ANN

We trained the P2CA− PSO−ANN model by using 60% of the data 
(N = 53) and evaluated the training accuracy of the proposed approach 
considering R, RMSE, and bias as the performance metrics. We found 
9

that the model performs efficiently on the training data (with R = 0.99, 
RMSE = 0.01, and bias = -1.31). However, for a fair evaluation, we 
assessed the performance of the trained model over the remaining 40% 
of the data (N = 35). We found that the model performs equally well 
on the unseen data with R = 0.99, RMSE = 1.76, and bias = -1.75. 
(See Fig. 12.)

We plot histogram to understand the error distribution gener-

ated during the prediction of the malaria cases using the proposed 
P2CA− PSO−ANN model during training and testing. We calculate the 
error from L1 norms by discarding the absolute part and plotted the 
stacked histogram of the training (in shades of red) and testing (in 
shades of green) errors using 10 bin size (Fig. 13). We found that the 
error ranges from 0.53 (left-most bin) to 10.07 (right-most bin). The 
total error follows a right skewed distribution. The zero error line lies 
adjacent to the peak of the distribution. Hence, in most instances, the 
predicted output is close to the observed values.

We performed the residual analysis of the proposed P2CA− PSO −
ANN model (Fig. 14). Unlike in the case of FF-ANN, we found that 
P2CA− PSO−ANN successfully captures the deterministic part of the 
response variable. We observed that most of the residuals lie within the 
testing RMSE line and do not follow any specific pattern (i.e., stochastic 
in nature) for both training and testing phases indicating that the model 
is a good fit.

5.4. Comparison with benchmark algorithms

For a fair evaluation of the machine learning models, we have com-

pared the results of P2CA− PSO−ANN and FF-ANN with the results 
of five benchmark algorithms; GRNN, GPR, SVR, Random Forest, and 
RBNN. We observed that all the algorithms perform differently on the 
same dataset. The P2CA− PSO−ANN outperforms all the other algo-

rithms in terms of accuracy (Table 2). FF-ANN ranks second in predict-

ing the number of malaria cases. We found the presence of negative bias 
(i.e., underestimation) in most of the benchmark algorithms. This indi-

cates that all these algorithms underestimate some values except RBNN, 
which significantly overestimates the malaria cases with a positive bias 
(58.62).

Although the proposed approach gives promising results, it has 
some limitations in terms of computational complexity. The use of 
P2CA− PSO−ANN increases the computational complexity of the pro-

posed approach. For a better comparison, we plot the computational 
time-complexity graph for all the algorithms (Fig. 15). We observed 

that P2CA− PSO−ANN exhibits a higher time-computational cost, fol-
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Fig. 11. Time series of the observed vs FF-ANN predicted malaria cases and the corresponding residual plot. Dashed line in the residual shows the testing RMSE.

Fig. 12. P2CA− PSO−ANN predicted malaria plotted against the observed cases. (a) for training dataset, and (b) for testing dataset.

Table 2

Comparison of the results with the benchmark algorithms (GRNN, GPR, SVR, Random Forest, and RBNN).

Performance metrics Methods

P2CA-PSO-ANN FF-ANN GRNN GPR SVR Random Forest RBNN

R 0.99 0.72 0.09 0.07 0.44 0.28 0.11

RMSE 1.76 62.23 93 93 92 89.57 92.86

Bias -1.75 -19.28 -18.48 -55.11 -31.6 -8.97 58.62
lowed by FF-ANN, RBNN, Random Forest, GRNN, and SVR whereas GPR 
exhibits the least time-complexity. This is primarily because of the com-

putation time the model takes to optimise a large number of internal 
parameters (i.e., weights and biases) in the case of P2CA− PSO−ANN
and FF- ANN. In contrast, those algorithms that have very few free pa-

rameters exhibit less computational time, such as GPR, SVR, GRNN, and 
10

Random Forest.
5.5. Controlling meteorological variables

We plot the time series of meteorological variables (rainfall, tem-

perature, relative humidity) to assess their control on malaria outbreak 
(Fig. 16). Rainfall during the monsoon period results in an increase in 
vector mosquito population. This causes a sharp rise in malaria cases 
(Fig. 3). During this period relative humidity is relatively high. This in-
put variable has also emerged as the most relevant feature in mapping 
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Fig. 14. Time series of the observed vs P2CA− PSO−ANN predicted malaria cases and the corresponding residual plot. Dashed line in the residual shows the testing 

RMSE.

Fig. 13. Error histogram analysis for P2CA− PSO−ANN with 10 bin size. 
Regions on the left and right of the zero error line (in orange) represent overes-

timation and underestimation region, respectively.

malaria cases. Further, the temperature in the study area is relatively 
high during the summer and decreases greatly at the onset of monsoon. 
Together with rainfall, high relative humidity, optimal temperature pro-

vides favourable conditions for mosquitoes. We have noticed the com-

bined effect of temperature and relative humidity together turns-out 
to be the second most important relevant feature in mapping malaria 
case. This suggests temperature and relative humidity are important in-

put predictors that provide favourable initial conditions for the malaria 
outbreak (Arab et al., 2014).

6. Conclusion

We used meteorological variables to predict malaria outbreak from 
a hybrid model (i.e., P2CA− PSO−ANN) in three districts of Rajasthan 
in the western India. Based on the outcomes of this study, we can draw 
11

the following conclusions;
Fig. 15. Time complexity of P2CA− PSO−ANN with the benchmark machine 
learning algorithms.

• Coupling the probabilistic principal component analysis and parti-

cle swarm optimisation with ANN significantly improves the per-

formance.

• The hybrid algorithm accurately predicts the malaria outbreaks. 
This algorithm is resistance to missing values in the feature set, 
that increases the robustness of the model.

• Linear data fusion of meteorological variables increases the pre-

dictive capability of the machine learning model. The combined 
effect of relative humidity and temperature shows a high predic-

tive capacity. Relative humidity has emerged as the most important 
variable in predicting the malaria outbreak.

The outcome of this study can be implemented at the district/state 
level for early prediction of malaria outbreaks in a region based on the 
climate forecast. This will help the concerned health departments to 
take precautionary measures to prevent disease outbreaks. The method-

ology developed in this study provides encouraging results with limited 
data. The robustness and prediction curability of our model needs to be 
evaluated with a long time series of input data. Further, this method-

ology can be generalised to predict any other types of vector-borne 
diseases.

In this study, we have only used meteorological variables to predict 

malaria outbreaks. Another important parameter that greatly controls 
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Fig. 16. Time series (form 2009 to 2012) of the meteorological variables (i.e., RH, Temperature, and Rainfall) in three districts (Bikaner, Barmer, and Jodhpur) of 
Rajasthan in the Western India. The shaded region in grey colour represents the monsoon period (i.e., JJAS; June-July-August-September).
the malaria outbreak is waterlogging during the rainy season (Ding 
et al., 2014, Podder et al., 2019, Majumdar, 2021). The waterlogging 
should be included as an input to evaluate its importance in predicting 
malaria outbreak.
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Appendix A. Performance metrics

We used the following equations to compute the value of R, RMSE, 
and bias. All these performance metrics are widely used for evaluating 
the performance of any regression-based machine learning algorithms. 
The value of R ranges between zero (i.e., worst) to one (i.e., best). The 
value of RMSE ranges from zero (i.e., best) to infinity (i.e., worst). Bias 
can be either positive (i.e., overestimation) or negative (i.e., underesti-

mation).√
𝐸𝑟𝑟𝑜𝑟𝑆𝑆𝐸
12

𝑅 = 1 −
𝐸𝑟𝑟𝑜𝑟𝑆𝑆𝑇

(A.1)
𝐸𝑟𝑟𝑜𝑟𝑆𝑆𝐸 =
∑

(𝑦𝑜𝑏𝑠 − 𝑦𝑝𝑟𝑒𝑑 )2 (A.2)

𝐸𝑟𝑟𝑜𝑟𝑆𝑆𝑇 =
∑

(𝑦𝑜𝑏𝑠 − 𝑦̄𝑝𝑟𝑒𝑑 )2 (A.3)

𝑅𝑀𝑆𝐸 =
√

𝑀𝑆𝐸 =
√

1
𝑛

∑
(𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑜𝑏𝑠)2 (A.4)

𝐵𝑖𝑎𝑠 = 1
𝑛

∑
(𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑜𝑏𝑠) (A.5)

where 𝐸𝑟𝑟𝑜𝑟𝑆𝑆𝐸 is the sum of squares of errors, 𝐸𝑟𝑟𝑜𝑟𝑆𝑆𝑇 is the sum of 
squares of total, 𝑦𝑝𝑟𝑒𝑑 is the predicted value, 𝑦𝑜𝑏𝑠 is the observe value, 
and 𝑛 is the number of observations.
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