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A B S T R A C T

Drastic advancement in computing technology and the dramatic increase in the usage of explainable machine
learning algorithms provide a promising platform for developing robust intrusion detection algorithms.
However, the development of these algorithms is constrained by their applicability over specific scenarios
of Wireless Sensor Networks (WSNs). We introduced a hybrid framework by combining Probabilistic Principal
Component Analysis (P2CA) and Generalised Additive Model (GAM), which is performing well for all the
scenarios of WSNs. To demonstrate our framework’s broad applicability, we evaluated its performance over
three publicly available intrusion detection datasets (i.e., LT-FS-ID, AutoML-ID, and FF-ANN-ID), each from
different scenarios. Our findings highlight that the presented framework can accurately predict the number
of 𝑘−barriers for all three datasets. Furthermore, we conducted a comprehensive performance comparison
between our proposed framework and benchmark algorithms, which revealed that our approach outperforms all
of them. Additionally, we evaluated the framework’s versatility by testing its performance on datasets unrelated
to intrusion detection, specifically ALE datasets. Notably, our approach accurately predicted the response
variable in these datasets and exceeded the performance of its primary algorithm, further demonstrating its
robustness and adaptability.

The implications of this research are substantial. By developing a robust intrusion detection framework that
performs well across diverse WSN scenarios, we address a critical need for reliable network security in various
domains, including industrial IoT, smart cities, and environmental monitoring. Our findings not only enhance
the understanding of intrusion detection in WSNs but also pave the way for developing more sophisticated
and adaptable systems to safeguard sensitive data and critical infrastructure.
1. Introduction

We live in a world facing political instability and unrest, causing
insecurity among the people. The hunger for political power, geo-
graphically essential regions, and control over others has made people
usurp. Therefore, securing national boundaries against any potential
attack of enemy forces, intrusion, or unauthorised entry is one of
the governments’ critical issues, requiring the concerned authorities’
immediate attention. A country may share borders with neighbouring
nations, extending over thousands of kilometers, necessitating continu-
ous monitoring. Several countries do not have regular armies to guard
their borders or inhabitants in the proximity of their international
boundaries. In addition, no country can establish checkpoints at ev-
ery location along the border area; thus, a vast region between the
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checkpoints and the boundary lines between the two countries remains
unguarded (Singh et al., 2022c). Further, patrolling methods are con-
ventional, limited, and periodic, resulting in unattended borders for
the long haul. These inadequate security measures would invite enemy
forces apparently to capture and control some geographically signifi-
cant regions. Further, enemies may intrude in restricted regions to steal
highly secret information or demolish some crucial military or civilian
establishments, which may substantially harm the country. Therefore,
intrusion detection at borders and around some crucial establishments
has become a country’s top priority (Singh et al., 2022b).

Wireless Sensor Networks (WSNs) can address this problem ef-
fectively. A WSN may comprise thousands of minuscule, affordable
Sensor Nodes (SNs) which do not demand any pre-installed foundation
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Fig. 1. Bibliometric analysis of the keywords ‘Intrusion Detection’ and ‘Machine Learning.’ Figure (a) illustrates the burst analysis of keywords used by authors in research papers
published in the Web of Science from 2013 to 2023 (up until July 18th 2023). The circles, distinguished by various colours, represent different clusters of relevant keywords, with
the circle’s diameter indicating their frequency of appearance. Figure (b) demonstrates the publication trend over the past ten years regarding the application of machine learning
in intrusion detection.
and functions autonomously in a decentralised manner (Nagar et al.,
2020; Singh et al., 2021b; Kotiyal et al., 2021). Therefore, WSNs are
highly in demand for monitoring, surveillance, intrusion detection, and
reconnaissance purposes along international borders (Bhadwal et al.,
2019; Arjun et al., 2019; Singh and Singh, 2021; Sood et al., 2022;
Shukla et al., 2023). In addition, SNs are cheap, demand less power,
are widely available, and quickly installable in emergency conditions
where human intervention is almost negligible; therefore, WSNs also
have many civilian applications such as industrial monitoring, precision
agriculture, forest fire detection, health monitoring, remote landslides
detection, structural health monitoring, and several others (Noel et al.,
2017; Aponte-Luis et al., 2018; Nagar and Sharma, 2018; Ghosh et al.,
2018; Singh et al., 2019; Kumar et al., 2020).

Surveillance, monitoring, and intrusion at international borders and
unauthorised access to prohibited regions like no man’s territories,
crucial establishments, and military bases etc., can be resolved by de-
ploying an effective WSN. Researchers across the globe have proposed
various algorithms and analytical frameworks to identify a potential
intruder and alert the concerned authorities before it harms (Karthick
et al., 2019; Arjun et al., 2019; Benahmed and Benahmed, 2019;
Sharma and Nagar, 2020; Amutha et al., 2021; Karanja and Badru,
2021). One of the significant issues with these frameworks is that
they need to be validated either through simulation runs or by actual
deployment in a given Region of Interest (RoI). Validating analytical
models via simulation runs is time-consuming, since it takes several
hours to obtain a single result for a defined parameter set. Further, as
the size of the network rises, the simulation time grows exponentially
in terms of the size of the RoI, the number of SNs, and the transmis-
sion/sensing range of SNs. Further, practical deployment of WSNs is
expensive, and money is an asset that is hard to get, if not impossible.
One of the possible solutions to resolve the high simulation time issue
is to use Machine Learning (ML) based approaches to predict the WSNs
performance metrics such as the number of barriers, intrusion detection
probability, coverage, connectivity, and so on. To gain insights into
the current trends of machine learning for intrusion detection, we
conducted a comprehensive bibliometric analysis of research papers
published in Web of Science (WoS) over the past ten years (Singh
et al., 2023a). Our analysis revealed a total of 2477 research papers,
consisting of 2223 research articles, 136 review articles, 82 early
access papers, 17 conference proceedings, and 9 other types of pub-
lications (Fig. 1). Remarkably, we observed an exponential surge in
the number of publications dedicated to machine learning for intrusion
2

detection, with a remarkable 687 publications occurring solely in 2022.
These findings underscore the paramount importance of studying and
exploring this subject matter. In Section 2, we discuss various ML-
based approaches to predict several performance metrics, especially the
𝑘−barrier and 𝑘−barrier coverage probability rendered by a WSN for
intrusion detection.

2. Related works

Surveillance and monitoring of crucial regions have become es-
sential in today’s scenario and can be addressed by deploying WSNs.
The performance of the deployed WSNs can be measured in terms of
𝑘−barrier coverage probability, which is one of the crucial metrics
for WSNs. A WSN is assumed to render 𝑘−barrier coverage if every
possible path from the point of intrusion to the destination is cov-
ered by at least 𝑘 distinct sensor nodes cumulatively, thus forming a
𝑘−barrier path (Keung et al., 2012). The researchers have proposed
various ML algorithms to accurately map the 𝑘−barrier and 𝑘−barrier
coverage probability that is used for intrusion detection and preven-
tion (Fig. 2). Algorithms for accurately predicting the 𝑘− barriers
include LT-FS-ID algorithm (Singh et al., 2022c), Automated Machine
Learning (AutoML) (Singh et al., 2022b) algorithm, FF-ANN-ID algo-
rithm (Singh et al., 2022a), GPR-ID algorithm (Singh et al., 2021a),
ANN model (Arora and Pal, 2022), and EFNNs algorithm (de Campos
Souza et al., 2022).

Singh et al. (2022c) introduced an algorithm that relies on log
transformation and scaling of the input features. They consider four
features: area of the RoI, sensing range, transmission range, and the
number of sensors for accurately mapping the 𝑘 number of barriers
in a rectangular RoI by considering uniform sensor deployment. In
addition, they evaluated the relative importance score and feature
sensitivity of all the features by employing the regression tree ensemble
approach and Partial Dependency Plot (PDP) analysis, respectively.
They reported that the LT-FS-SVR algorithm estimates the number of
barriers with R = 0.98, RMSE = 6.47, and bias = 12.35. However,
the major limitation associated with the LT-FS-ID algorithm is that it
considers only positive real numbers to be used as input predictors. To
overcome this limitation, recently, Singh et al. (2022b) have proposed
an automated machine learning algorithm (i.e., AutoML-ID) to precisely
estimate the 𝑘−barriers in a rectangular RoI considering Gaussian
node deployment. The proposed algorithm automatically determines
the best ML model from the set of ML algorithms [Support Vector
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Fig. 2. Current state-of-the-art machine learning algorithms for solving intrusion detection problem domain.
c
n
a
l
a

s
𝑘

egression (SVR), Gaussian Process Regression (GPR), Binary Decision
ree (BDT), Random Forest (RF), Boosting Ensemble Learning (B-EL),
nd Linear Regression (LR)]. They employed a robust search strat-
gy (Bayesian optimisation) which explored different combinations of
lgorithms and their hyperparameters. The performance of different
lgorithms is compared using the evaluation metrics (R, RMSE, and
ias). Finally, the algorithms are ranked based on their performance,
nd the best-performing algorithms are selected as candidates for fur-
her optimisation. After the hyperparameter optimisation process, the
lgorithm that achieves the best performance on the evaluation metrics
as selected. They reported that among all the algorithms involved in

he AutoML-ID, GPR emerges as the best-performing algorithm with R
1, RMSE = 0.007, and bias = −0.006. Although the AutoML approach

ields the best results, the practical implementation of AutoML is
ery difficult. The recently proposed FF-ANN-ID model overcomes this
imitation (Singh et al., 2022a). They trained and analysed the FF-ANN-
D model for a circular RoI by considering both uniform and Gaussian
ensor distribution. They stated that the model estimates the 𝑘−barriers
ith R = 0.79 and RMSE = 48.36 for uniform distribution and with R =
.78, RMSE = 41.1 for Gaussian distribution. The limitation associated
ith the FF-ANN-ID algorithm is that it fails to solve the problem of
ata stream regression issue. More recently, de Campos Souza et al.
2022) developed an Evolving Fuzzy Neural Networks (EFNNs) that
olves the data stream regression issues, along with the prediction
f the 𝑘-barriers in WSNs to detect unauthorised access. This system
mplements only if-then rules in the fuzzy system to estimate the num-
er of barriers. To evaluate the proposed method’s effectiveness, they
ompared it with existing evolving methods through empirical evalu-
tions. The results highlight the superior performance of the EFNNs,
s they demonstrate significantly lower RMSE values when tested on
eparate data sets. Furthermore, the evaluation includes a stream-based
nterleaved-predict-and-then-update procedure, further validating the
roposed approach’s efficacy. Recently, Muruganandam et al. (2023)
ested the potential of a feed-forward neural network in accurately
redicting the 𝑘−barriers on LT-FS-ID datasets (Singh et al., 2022c).
hey found that the feed-forward neural network accurately predicts
he 𝑘−barriers with R = 0.95 and RMSE = 6.15. The achieved high
3

orrelation coefficient and relatively low RMSE indicate the effective-
ess of the model in capturing the underlying patterns and providing
ccurate predictions. These results contribute to the growing body of
iterature on employing neural networks for barrier prediction tasks
nd emphasise their potential as a valuable tool in this domain.

Apart from developing ML models for predicting 𝑘−barriers, the re-
earchers have also proposed several ML models for predicting
−barriers coverage probability. Recently, Singh et al. (2021a) de-

veloped three ML methods based on GPR algorithms [i.e., scale-GPR
(S-GPR), centre-mean-GPR (C-GPR), and Non-standardise GPR (NS-
GPR)] to map the 𝑘−barrier coverage probability in a rectangular
RoI considering Poisson point sensor distribution. They trained these
models by using the squared exponential kernel and then evaluated
their performance over the testing dataset. They reported that the NS-
GPR outperforms all the other variants with R = 0.85 and RMSE =
0.095. More recently, Arora and Pal (2022) proposed an ANN-based
architecture to predict the 𝑘−barriers coverage probability. In addition,
they have also considered the Boundary Effects (BEs) into account to
incorporate the shadowed environments and estimate the 𝑘−coverage
probability with R = 0.98 and RMSE = 0.07 and outperform the
result of Adaptive Neuro-Fuzzy Inference System (ANFIS) in terms of
accuracy. Recently, Nagar et al. (2023) also proposed a Generalised
Regression Neural Network (GRNN) based approach for predicting
𝑘−barriers coverage probability by considering BEs and Shadowing
Effects (SEs). They considered six features: length, breadth, number of
sensors, sensing range of sensors, required 𝑘, and standard deviation
of SEs. They found that the proposed model accurately predicts the
𝑘−barriers coverage probability with R = 0.78 and RMSE = 0.14. The
inclusion of BEs and SEs in the model allows for a more comprehensive
understanding of the factors influencing barrier coverage probability.
By considering these effects and incorporating relevant features, the
GRNN-based approach proposed by Nagar et al. (2023) shows promise
in accurately estimating the coverage probability of 𝑘−barriers. These
findings contribute to advancing machine learning techniques in barrier
prediction tasks and provide valuable insights into improving wireless

sensor systems’ performance.
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The major issue associated with the work discussed above is the
demand for new algorithms for each different scenario of WSNs. This
paper proposes a novel ML-based approach for accurately predict-
ing 𝑘−barriers to ensure fast intrusion detection and prevention by
coupling probabilistic principal component analysis and generalised
additive model. The proposed framework solves the problem of hav-
ing different machine learning algorithms for different scenarios of
WSNs based on RoI (circular or rectangular) and node deployment
(uniform or Gaussian). In doing so, we trained the hybrid algorithms on
three publicly available intrusion detection datasets. All these datasets
use network and sensor properties as features for accurate mapping
of 𝑘−barriers using regression-based machine learning. Finally, we
evaluated its performance by considering the performance indicators,
such as R, RMSE, and bias. By addressing the challenge of diverse
WSN scenarios, our proposed approach demonstrates the potential to
enhance intrusion detection and prevention. Through empirical evalua-
tion on publicly available datasets, we aim to establish the effectiveness
and robustness of our framework. The performance indicators provide
quantitative insights into the accuracy and reliability of our model’s
predictions.

3. Datasets

We considered three intrusion datasets (LT-FS-ID, AutoML-ID, and
FF-ANN-ID) to evaluate the performance of the proposed hybrid algo-
rithm (Singh et al., 2022c,b,a). In addition to addressing the 𝑘−barriers
intrusion detection problem, these datasets are employed to evaluate
the performance of the newly proposed regression algorithms (de Cam-
pos Souza et al., 2022). We discussed these datasets in the upcoming
subsections.

3.1. LT-FS-ID

The datasets for LT-FS-ID (Singh et al., 2022c) are obtained syn-
thetically by simulations that utilise Network Simulator-2.35 (NS-2.35),
which are intended for training and testing purposes. The main ad-
vantage of employing NS-2.35 is that it has gained prominence in
networking due to its adaptability, scalability, and potential to simulate
the algorithm’s performance in wired or wireless networks. Hence,
to extract the LT-FS-ID datasets, a finite number of sensor nodes,
ranging from 100 to 400, are considered that are deployed randomly
in the rectangular RoI. Each sensor node is considered homogeneous,
meaning its sensing, transmission, and processing capabilities are the
same. There exist several sensing and transmission range models in
the literature, viz., binary, log-normal, and Elfes model (Hossain et al.,
2012; Nagar et al., 2022). A Binary Sensing Model (BSM) assumes that
an event/object is sensed by a sensor node if and only if its Euclidean
distance is less than or equal to the sensor’s sensing range. In other
words, a BSM assumes identical received power in all directions, which
is not true for real scenarios. In real scenarios, various obstacles exist
in the wireless signal propagation environment that cause variations
in received signal power. Therefore, the characteristics of a wireless
channel keep changing with the change in the signal propagation
environment, making it crucial to incorporate the randomness in wire-
less channel characteristics while considering a sensing range model.
The log-normal shadow-fading model incorporates the randomness in
wireless channel characteristics denoted by its standard deviation (SD)
of shadow-fading. A large value of SD represents large variations in
received power and vice-versa. To analyse the performance of WSNs,
the BSM is being used as it is very useful for initial mathematical
formulations and analysis.

Singh et al. (2022c) used Monte Carlo simulation to extract relevant
features, such as the area of RoI, the sensing range, the transmission
range of sensor nodes, and the number of sensors from the network
parameters. The RoI was varied in the range from 100 × 50 m2 to
4

250 × 200 m2. The primary reason for selecting a finite rectangular-
shaped RoI was that most real estate in real life is rectangular. The
sensing and transmission range of sensor nodes varied from 15 to 40 m
and 30 to 80 m, respectively. This is because of the fact that the sensing
and transmission range of sensor nodes should be kept less than or
equal to half the width of the rectangular shaped RoI to avoid boundary
effects. Moreover, a regression ensemble model was developed using
boosting ensemble learning to measure the relative importance score
of each feature. The sensitivity analysis of each feature was carried
out using PDP, following feature scaling to the selected features. This
dataset has gained significant recognition among researchers as a valu-
able resource for validating novel algorithms in 𝑘-barrier prediction for
fast and accurate intrusion detection (de Campos Souza et al., 2022;
Muruganandam et al., 2023).

3.2. AutoML-ID

The Automated Machine Learning (AutoML) model selects vari-
ous ML models, such as binary decision tree, GPR, bagging ensemble
learning, SVR, boosting ensemble learning, kernel regression, and LR
model, to predict the number of 𝑘−barriers. Singh et al. (2022b) used
Bayesian Optimisation (BO) to optimise the hyperparameters. They
used a synthetic approach to extract the predictor datasets using Monte
Carlo simulations, and the entire dataset was generated with the NS-
2.35 simulator. Depending upon the application needs, sensor nodes in
a given RoI can be distributed either following a uniform or Gaussian
distribution model. Therefore, this dataset was obtained by deploying a
finite number of homogeneous sensor nodes in a finite rectangular RoI
using a Gaussian distribution.

The Gaussian distribution is suited for practical applications and
offers distinct capabilities to sensor nodes positioned at various lo-
cations. For better-detecting capabilities, more sensor nodes should
be deployed. In a Gaussian distributed WSN, more sensor nodes are
deployed closer to the central of the RoI denoted by P. In locations far
away from P, fewer sensors are deployed, lowering the cost of network
deployment (Wang et al., 2012). The Probability Density Function
(PDF) is represented as:

𝑓 (𝑥, 𝑦) = 1
2𝜋𝜎𝑥𝜎𝑦

𝑒
−

(

(𝑥−𝑥𝑖 )2

2𝜎2𝑥
+ (𝑦−𝑦𝑖 )2

2𝜎2𝑦

)

(1)

where (xi, yi) represents the deployment point, 𝜎𝑥 and 𝜎𝑦 are the
standard deviations for x and y dimensions, respectively. The objective
function (f) in BO is determined using the Gaussian Process (GP) as:

𝑓 (𝑥) ∼ 𝐺𝑃 (𝜌(𝑥), 𝜏(𝑥𝑖, 𝑥𝑗 )) (2)

where 𝜌 and 𝜏 are calculated from the observations of x. BSM was
used to evaluate the WSN’s performance. In BSM, if the target is
present inside the sensor’s sensing range, it can be detected by any
sensor at random. Otherwise, the probability of detecting the target
will be zero. Furthermore, the relevancy of the selected predictors,
namely, the area of the RoI, sensing range, transmission range, and the
number of sensors in determining the 𝑘−barriers, was computed by the
regression tree ensemble technique by estimating the relative score of
each predictor in the AutoML-ID approach.

3.3. FF-ANN-ID

The dataset for Fully Connected Feed Forward Intrusion Detection
(FC-FF-ID) is obtained using NS-2.35 (Singh et al., 2022a). Here, a finite
number of sensor nodes, ranging from 100 to 400, were assumed to
be deployed randomly and uniformly in a finite circular RoI having a
radius of R meters. A circular region was another real-life shape we
might have seen almost every day in the form of parks, buildings, and
playing grounds like cricket stadiums, etc. The circular region’s radius
was considered to vary from 40 m to 127 m. In this scenario as well,
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the sensing range of sensor nodes was assumed to be less than or equal
to half the radius of the assumed circular region to avoid the boundary
effects. This model considers two sensor nodes distribution models, viz.,

aussian and uniform (Wang et al., 2008). For the Gaussian model, the
DF for a point (x, y) deployed with a sensor node in a circular RoI is
etermined by:

(𝑥, 𝑦) = 1
2𝜋𝜎𝑥𝜎𝑦

𝑒
−

(

(𝑥−𝑥𝑐 )2

2𝜎2𝑥
+ (𝑦−𝑦𝑐 )2

2𝜎2𝑦

)

(3)

here (xc, yc) represents the centre of the circular RoI, 𝜎𝑥 and 𝜎𝑦 are
he standard deviations for x and y dimensions, respectively. Moreover,
he location of a sensor node within the circular RoI denoted by (𝛼, 𝜙)
an also be represented using position coordinates (x, y) if

(𝑥, 𝑦) ∶
√

(𝑥 − 𝑥𝑐 )2 + (𝑦 − 𝑦𝑐 )2 ≤ 𝑅 = 𝑓 (𝛼, 𝜙) ∶ 𝛼 ≤ 𝑅 (4)

For the uniform sensor node distribution model, the PDF for the
position of a random sensor node is given by:

𝑓𝑝(ℜ) =

{

1, 𝑖𝑓𝑃𝑐 ∈ ℜ
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

where 𝑃𝑐 = (𝛼, 𝜙) represents the position of the node which is randomly
deployed in the circular RoI, 𝛼 ∈ [0, 𝑅], represents the node’s distance
from the centre of the circular RoI, and 𝜙 ∈ [0, 2𝜋], represents the angle
formed by the x-axis and the line passing through the position of the
sensor. Moreover, the probability that a node positioned at an arbitrary
location 𝑃𝑐 = (𝛼, 𝜙) is determined by:

𝑓 (𝑃𝑐 ) =
1

𝜋𝑅2
(6)

4. Methodology

In this section, we provided an overview of the theoretical back-
ground of two key methods: probabilistic principal component analysis
and generalised additive model. We explained their individual concepts
and characteristics. Next, we explored the coupling of probabilistic
principal component analysis and generalised additive model to lever-
age their combined strengths in capturing complex patterns and rela-
tionships in the data. We highlighted how this coupling enhances the
modelling capabilities and leads to improved performance. Finally, we
delved into the optimisation process of the proposed model, describing
the steps involved in fine-tuning the model’s parameters and achieving
the best possible results. To provide a visual representation of the
methodology, please refer to Fig. 3 for a detailed flowchart illustrating
the different stages and interactions of the proposed approach.

4.1. Probabilistic Principal Component Analysis (𝑃 2CA)

Tipping and Bishop introduced the 𝑃 2CA (Tipping and Bishop,
999), which is a probabilistic formulation of Principal Component
nalysis (PCA) relying on the Gaussian latent variable model. The
robability model can quantify the noise level in the observed data.
oreover, it can predict the Principal Components (PCs) in scenarios
ith missing data (Singh et al., 2023b). 𝑃 2CA is rapidly being used in

ault detection and data recovery (Ma et al., 2021).
Consider yi = (yi1, . . . ,yip)T as the feature vectors which are ex-

racted from the variables of interest for the ith subject, i = 1,2, . . . ,n.
athematically, the probabilistic representation of PCA (Suresha and

arthasarathy, 2021; Geraci and Farcomeni, 2016) is given by:

𝑖 = 𝜇 +𝑊 𝑢𝑖 + 𝜖𝑖, 𝑖 = 1,… , 𝑛 (7)

here ui is a vector of principal components and W is stated as p ×
matrix with elements Wjh, j = 1, . . . ,p, h = 1, . . . ,q. Moreover, u is

tochastically independent from 𝜖, and is represented as:
5

𝑖 ∼ 𝛶 (0, 𝐼𝑞) (8) c
here I represents q-dimensional identity matrix. If the error is as-
umed to be zero-centred Gaussian with a covariance matrix 𝛤 , 𝜖𝑖 ∼
(0, 𝛤 ), the multivariate distribution is then determined as:

𝑖 ∼ 𝛶 (𝜇, 𝐶), 𝐶 = 𝑊𝑊 𝑇 + 𝛤 (9)

4.2. Generalised Additive Model (GAM)

The GAM is a non-parametric regression model based on the com-
bination of the generalised linear model and the additive model. The
fundamental principle of this model is to use a connection function that
links the dependent variable to the sum of smooth functions that relate
to every independent variable. In addition, it can prevent the issue of
dimensional disaster and more accurately depict the complex nonlinear
relationship among variables (Wang et al., 2021a). Mathematically, the
GAM is represented as:

𝑔(𝜇) =
𝑝
∑

𝑗=1
𝑆𝑗 (𝑋𝑗 ) + 𝛼 (10)

here 𝜇 = 𝐸(𝑌 |𝑋1, 𝑋2,… , 𝑋p) is the expectation of 𝑌 , 𝑔(.) rep-
esents the connection function, 𝑆 j(.), 𝑗 = 1, 2,… , 𝑝 represents the
onparametric smooth function, 𝛼 is a constant.

To attain a good fit, penalty regression is incorporated into the GAM
odel. The smooth function’s high variability and subsequent model

verfit are avoided by adding a penalty term to the basis function’s
oefficient.

𝑝(𝛾) = 𝑙(𝛾) − 𝜆𝐵′𝑆𝐵 (11)

here 𝛾 is the regression coefficient, and 𝑆 is the penalty matrix.
he Eq. (11) obtains the following form (Eq. (12)) if the loss function

s set to be the least squares (Tong et al., 2021).

𝑝(𝛾) =
∑

(𝑦 −𝑋𝛾)2 − 𝜆𝐵′𝑆𝐵 (12)

GAMs leverage the Explainable Boosting Machine for interpretation,
n which shape functions are ensembles of bagged trees that have
een gradient-boosted and act on a single variable. Gradient Boosting
achines (GBMs) construct an additive ensemble model of M size by

ntroducing base learners that perform better than the earlier ones,
teratively enhancing the predictions of y from x in relation to loss
unction:

𝑚(𝑥) = 𝑔𝑚−1(𝑥) + 𝜌𝑚ℎ𝑚(𝑥) (13)

here 𝜌m represents the weight of the mth function hm(x), which
erves as the ensemble models (Bentéjac et al., 2021). The gradient
oosting algorithm uses decision trees as its basis model to reduce
he expected loss function. Some of its metrics include the maximum
umber of splits per predictor (maxNumSplits) and the number of
rees per predictor (numTrees). They are chosen according to the
pecified task and to deliver a high level of generalisation and accu-
acy (Konstantinov and Utkin, 2021). The generalisation and accuracy
f regularisation techniques introduced for GBMs can be significantly
mproved through the process of subsampling. Subsampling introduces
andomness to the fitting process by using only a random subset of the
raining data to fit a consecutive base-learner at each learning iteration.
he ‘‘bag fraction’’ is a crucial parameter in the subsampling process,

ndicating the ratio of data utilised at each iteration. It is a positive
umber that should not exceed one. One of the key advantages of
ubsampling is that it reduces computational efforts, particularly for
arge data sets. By using a smaller fraction of the training data at
ach iteration, the algorithm can adapt to large-scale datasets more
fficiently. Additionally, subsampling allows for achieving the desired
ccuracy with a lower bag fraction, meaning a smaller proportion of the
raining data is used while increasing the number of base-learners. To
upport these claims, Natekin and Knoll (2013) and Sutton (2005) have
rovided further evidence of the effectiveness of subsampling in GBMs.
oreover, the gradient boosting algorithm solves regression issues and
an handle complex non-linear function dependencies.
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Fig. 3. Flowchart of the methodology.
4.3. Coupling 𝑃 2CA and GAM

After standardising the input feature set using the z-score scaling,
we feed the transformed features as input to the 𝑃 2CA. It performs
dimension reduction by leveraging a probabilistic mechanism. We re-
constructed the data by considering 90% of the variance. Finally, we
fed the 𝑃 2CA reconstructed data as an input to the GAM for creating a
mapping function between the input and the response variable (Fig. 3).

The coupling of 𝑃 2CA and GAM is essential for several reasons.
Firstly, 𝑃 2CA allows us to capture the underlying probabilistic structure
of the data, enabling a more comprehensive understanding of the
intrusion patterns and characteristics within the network. This helps
in identifying relevant features and reducing the dimensionality of the
data, improving the accuracy of prediction models. Secondly, GAM
is a powerful statistical modelling technique that allows for flexible
modelling of complex relationships between predictors and the re-
sponse variable. By incorporating GAM, we can capture non-linear
relationships, interactions, and complex dependencies within the data.
This is particularly beneficial for accurately predicting the 𝑘−barriers
for intrusion detection and prevention, as it enables us to capture the
intricate nature of intrusion patterns and their associated factors.

Furthermore, the coupling of 𝑃 2CA and GAM leverages the com-
plementary strengths of both methods. 𝑃 2CA aids in feature extraction
and dimensionality reduction, while GAM provides a flexible modelling
framework for accurately capturing complex relationships. This combi-
nation enhances the predictive capabilities of the model and improves
the accuracy of predicting the 𝑘−barriers.

4.4. Bayesian Optimisation (BO)

It is a very efficient optimisation approach that integrates prior
knowledge of the unknown function (𝜂) with sampling points (p) to
acquire posterior information about the function distribution by using
the Bayesian algorithm. The global optimal solution is determined
6

by this posterior information (Shi et al., 2021). Mathematically, the
hyperparameter optimisation using BO is denoted as:

𝑝+ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑝∈𝜗

𝜂(𝑝) (14)

where 𝜗 indicates the search space of p and p+ indicates the position at
which the unknown function 𝜂 is maximised.

BO consists of (a) an objective function that is modelled by a
Bayesian statistical model and (b) an acquisition function, which de-
termines where to sample next. The acquisition function accomplishes
sampling points within the search space. The time complexity of
BO is O(n3), where n indicates the number of observations (Wang
et al., 2021b). Moreover, BO finds better hyperparameters than ran-
dom search in fewer iterations in various applications such as recom-
mender systems, robotics and reinforcement learning, environmental
monitoring, and sensor networks, preference learning and interactive
interfaces, automatic machine learning and hyperparameter tuning,
combinatorial optimisation, and natural language processing due to its
ability to exploit regions likely to contain optimal solutions (Shahriari
et al., 2015; ALGorain and Clark, 2022). BO outperforms random search
by intelligently exploring the search space, adapting the sampling strat-
egy based on previous evaluations, leveraging acquired information,
and effectively handling constraints. Furthermore, BO is effective in op-
timising complex, high-dimensional search spaces. The random search
may struggle in such cases due to its lack of guidance, often requiring a
large number of random samples to cover the search space adequately.
BO, on the other hand, leverages the probabilistic surrogate model to
make informed decisions about which hyperparameter configurations
to evaluate next. This enables BO to efficiently explore and exploit the
search space, leading to faster convergence towards better hyperparam-
eters. These factors contribute to its superior performance and make it
a popular choice for optimising complex functions such as Deep Belief
Networks (DBNs) when limited evaluations are available (Bergstra
et al., 2011).

Hence, in this study, we have optimised two hyperparameters of
GAM using BO. The two hyperparameters are MaxNumSplits, which
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Fig. 4. (a) Illustration of the BO process for the optimisation of the hyperparameters, (b) linear regression plot between the observed and model predicted values on the LT-FS-ID
dataset. The shade of blue represents the 95% confidence interval, (c) error histogram analysis using 10 bins, (d) residual plot. The dashed line illustrates the ± testing RMSE
value.
represents the maximum number of branch node splits, and NumTrees,
which represents the total number of trees in a forest.

5. Results

5.1. Model performance over LT-FS-ID dataset

We optimised the hyperparameters (i.e., maxNumSplits and
numTrees) using BO and illustrated the estimated objective function
value in Fig. 4a. In doing so, we found that for maxNumSplits = 1 and
numTreesWe = 114, the model records the minimum cross-validation
loss between the observed and predicted values. Afterwards, we used
80% of the dataset to train the optimised model. We used the remaining
dataset to test the model performance using R and RMSE as the
performance metrics. To compute the performance metrics, we fitted
a linear curve between the observed and predicted values (Fig. 4b).
We found that the predicted barriers suit the observed values with R
= 0.97 and RMSE = 15.22. Subsequently, to analyse the distribution
of the errors, an error histogram (using ten bins) analysis is performed
(Fig. 4c). We found that the error ranges between −52.23 (leftmost
bin) to 25.42 (rightmost bin). The vertical orange line represents the
zero error line. The region left to the vertical line represents the
underestimation region (i.e., negative errors), and the region right to
the vertical line represents the overestimation region (i.e., positive
errors). It is observed that the error follows a Gaussian distribution
with its peak exactly superimposed with the zero error line, indicating
a good-fit model. Finally, we plotted the residual plot to check the
appropriateness of the model (Fig. 4d). We found that the residuals are
stochastic, indicating a good fit. Also, most of the residuals lie within
the ± testing RMSE values with occasional peaks.
7

5.2. Model performance over AutoML-ID dataset

For the AutoML-ID dataset, we first optimised the hyperparameters
by leveraging BO. In this case, we found that for maxNumSplits = 1,
and numTrees = 329 the model attained the minimum cross-validation
loss (Fig. 5a). We then trained the optimised model by using 80% of
the dataset and used the remaining dataset (i.e., 20%) for the testing of
the trained model. We found that the model-predicted barriers align
well with the observed values (with R = 0.99 and RMSE = 10.88).
The regression line coincides with the 1:1 line, and all the data points
cluster along the line, indicating the best-fit model (Fig. 5b). Then, we
performed the error histogram analysis and found that the error ranges
from −27.24 to 41.16. The error follows a Gaussian distribution with
the peak lying near the zero error line, indicating a good-fit model
(Fig. 5c). Finally, we performed the residual analysis and plotted the
residuals at each instance (Fig. 5d). We found that most residuals are
well inside the ± testing RMSE value with occasional peaks.

5.3. Model performance over FF-ANN-ID dataset

Using the FF-ANN-ID dataset, we have optimised the hyperparam-
eters of the models by using BO and found that for maxNumSplits =
1 and numTrees = 150, the model obtained minimum cross-validation
loss (Fig. 6a). We then divided the entire dataset into 80:20 ratios for
training and testing, respectively. We used the training dataset to train
the model using optimised hyperparameters. Afterwards, we analysed
the trained model’s performance by using the testing dataset. In this
way, the testing data are fed into the model input, and its performance
is recorded. We found that the predicted barriers accord well with
the observed values with R = 0.98 and RMSE = 13.74 (Fig. 6b).
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Fig. 5. (a) Illustration of the BO process for the optimisation of the hyperparameters, (b) linear regression plot between the observed and model predicted values on the AutoML-ID
dataset. The shade of blue represents the 95% confidence interval, (c) error histogram analysis using 10 bins, and (d) residual plot. The dashed line illustrates the ± testing RMSE
value.
We then performed the error histogram analysis and found that the
error ranges from −30.49 to 45.11 (Fig. 6c). Also, the error follows
a Gaussian distribution, indicating a good fit. Finally, we performed
residual analysis and plotted the residuals in Fig. 6d. Every residual is
random and lacks any pattern determining a good-fit model. Moreover,
most of the residuals lie within the ± testing RMSE value.

After critically comparing the results of the proposed approach on
all three datasets, we discovered the following profound insights that
shed light on key aspects of the analysis:

• Consistency: The proposed model consistently performs well
across all three datasets, suggesting its robustness and general-
isability. This consistency indicates that the model is effective
in capturing the underlying patterns and relationships present in
different intrusion detection datasets.

• Dataset Variability: The performance metrics (R and RMSE) vary
slightly across the datasets. This variability can be attributed to
differences in the characteristics and complexities of the datasets
themselves. It highlights the need to consider dataset-specific
factors when evaluating and comparing model performance.

• AutoML-ID Superiority: The AutoML-ID dataset stands out with
the highest correlation coefficient (R = 0.99) and the lowest root
mean square error (RMSE = 10.88) among the three datasets. This
suggests that the proposed model is particularly well-suited for
this dataset, as it captures the patterns and relationships more
accurately.

• General Performance: Overall, the proposed model demonstrates
strong performance on all three datasets. The obtained correlation
coefficients (R) are relatively high, indicating a good fit between
8

predicted and actual values. The RMSE values are also within
acceptable ranges, suggesting that the model’s predictions are
reasonably close to the true values.

In summary, the proposed machine learning model shows good per-
formance on all three intrusion detection datasets for different scenarios
of WSNs. While there are slight variations in the results, the model con-
sistently demonstrates its efficacy in capturing the underlying patterns
and relationships within the data. The AutoML-ID dataset particularly
showcases the model’s superior performance. These findings emphasise
the model’s potential as an effective tool for intrusion detection in
WSNs and warrant further investigation and application in real-world
scenarios.

6. Discussion

6.1. Ablation experiments and comparison

We perform an ablation experiment on the feature set to assess the
individual contribution and impact of each input feature. We conducted
a series of ablation experiments that systematically removed specific
features from the input data while keeping other factors constant. We
considered all the possible combinations of two and three input fea-
tures. We then evaluated the performance of the P2CA-GAM-ID model
with each ablated feature combination, measuring various performance
metrics such as R, RMSE, and bias on all three datasets (Table 1). By
comparing the results of these ablation experiments, we were able to
determine the optimal feature combination that yielded the highest
performance for the P2CA-GAM-ID model. The ablation experiments
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Fig. 6. (a) Illustration of the BO process for the optimisation of the hyperparameters, (b) linear regression plot between the observed and model predicted values on the FF-ANN-ID
dataset. The shade of blue represents the 95% confidence interval, (c) error histogram analysis using 10 bins, and (d) residual plot. The dashed line illustrates the ± testing RMSE
value.
Table 1
Ablation study on input features: A stands for Area, SR stands for Sensing range, TR stands for Transmission range, and NS stands for Number
of sensors.
Ablated feature
combination

Datasets

LT-FS-ID AutoML-ID FF-ANN-ID

R RMSE Bias R RMSE Bias R RMSE Bias

A+SR 0.36 26.93 −16.73 0.70 29.01 −12.77 0.52 29.43 −16.46
A+TR 0.36 26.93 −16.73 0.70 29.01 −12.77 0.52 29.43 −16.46
A+NS 0.36 26.93 −16.73 0.70 29.01 −12.77 0.52 29.43 −16.46
SR+TR 0.36 26.93 −16.73 0.40 36.67 −8.12 0.66 42.07 −4.28
SR+NS 0.36 26.93 −16.73 0.40 36.67 −8.12 0.66 42.07 −4.28
TR+NS 0.74 39.02 −5.81 0.40 36.67 −8.12 0.66 42.07 −4.28
A+SR+TR 0.94 23.07 −2.83 0.92 24.11 −2.26 0.96 24.56 −1.86
SR+TR+NS 0.86 28.34 −3.81 0.92 23.78 −3.57 0.97 16.71 −1.77
TR+NS+A 0.86 29.64 −2.82 0.93 23.28 −4.42 0.97 15.83 −1.61
NS+A+SR 0.94 21.14 0.55 0.92 26.60 1.28 0.96 21.49 0.49
All features
(A+SR+TR+NS)

0.97 15.22 −1.49 0.99 10.88 −1.17 0.98 13.74 −0.93
revealed that the P2CA-GAM-ID model achieved the highest accuracy
when all the input features were considered, indicating the collective
importance of the feature set in capturing the underlying patterns
and achieving optimal performance in all three datasets. In addition,
we observed minimal variation in the model accuracy when consider-
ing a combination of two input features, whereas significant changes
were observed when incorporating a combination of three input fea-
tures. Our findings provided insights into the feature’s importance
and enabled us to make informed decisions regarding the inclusion or
exclusion of specific features in the final model.
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6.2. Comparison with the existing algorithms

We compared the results obtained from P2CA-GAM-ID with the
primary algorithms for each dataset. We have compiled and tabulated
the results in Table 2. For the LT-FS-ID dataset, we found alike perfor-
mance with a comparable correlation coefficient. However, the RMSE
of the P2CA-GAM-ID is higher than the primary algorithm. We found
a similar observation in the case of the AutoML-ID dataset. Neverthe-
less, for the FF-ANN-ID dataset, we found that the results obtained
through P2CA-GAM-ID outperform the primary algorithm with a high
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Table 2
Comparison of the P2CA-GAM-ID results with the primary algorithms.

Performance
metrics

LT-FS-ID
(Singh et al., 2022c)

AutoML-ID
(Singh et al., 2022b)

FF-ANN-ID (Gaussian)
(Singh et al., 2022a)

Primary P2CA-GAM-ID Primary P2CA-GAM-ID Primary P2CA-GAM-ID

R 0.98 0.97 1 0.99 0.76 0.98
RMSE 6.47 15.22 0.007 10.88 29.86 13.74
Table 3
Comparison with the benchmark algorithms.
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R 0.38 0.96 0.99 0.01 0.03 0.97 0.47 0.97 0.97 0.41 0.30 0.99 0.78 0.89 0.99 0.68 0.69 0.98
RMSE 46.37 57.56 32.15 40.45 65.03 15.22 36.96 64.61 75.72 161.11 107.95 10.882 41.15 39.66 11.37 65.67 75.12 13.74
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correlation coefficient (R = 0.98) and low RMSE (RMSE = 13.74).

6.3. Comparison with the benchmark algorithms

For a fair and unbiased evaluation of the proposed framework, we
compared the P2CA-GAM-ID results with the benchmark algorithms
that are frequently used to solve intrusion detection problems. We
selected Artificial Neural Network (ANN), General Regression Neural
Network (GRNN), Random Forest (RF), Radial Basis Neural Network
(RBN), and Exact Radial Basis Neural Network (ERBN) algorithm for
comparison and evaluated their performance on all the three datasets
(i.e., LT-FS-ID, AutoML-ID, and FF-ANN-ID). To ensure a fair compar-
ison, we employed a common optimisation technique, namely BO, to
optimise the hyperparameters of each algorithm. By employing this
approach, we aimed to find the most suitable parameter settings for
each method, effectively minimising any potential bias arising from
inconsistent or suboptimal parameter choices. We considered R, RMSE,
and bias as the performance metrics (Table 3). We found that P2CA-
GAM-ID outperforms all the benchmark algorithms when we consider
all the performance metrics for all three datasets. Also, among all the
benchmark algorithms, RF emerged as the best-performing algorithm
for all three datasets.

6.4. Performance over publicly available dataset

For generalisation of the P2CA-GAM-ID, we have tested its perfor-
ance on dataset other than intrusion detection. In doing so, we have

elected the widely used (Average Localisation Error) ALE regression
ataset (Singh et al., 2020; Chen et al., 2022). We downloaded the
ataset from UCI Machine Learning Repository (https://archive.ics.u
i.edu/dataset/844/average+localization+error+(ale)+in+sensor+nod
+localization+process+in+wsns). It consists of four input features;
nchor ratio, transmission range, node density, and iteration with ALE
s the target variable. It has a dimension of 107 × 6. We applied the
ame methodology and optimised the model by using BO. In doing
o, we found that for maxNumSplits = 6 and numTrees = 2 the
odel obtained minimum cross-validation loss (Fig. 7a). We used these

uning parameters to train the model by using 70% of the dataset and
valuated its performance by using the remaining 30% dataset. It is
dentified that the predicted ALE suits the observed values with R =
.82 and RMSE = 0.202 (Fig. 7b). Afterwards, we performed error
nalysis and found that the error follows the Gaussian distribution,
ndicating a good-fit model with its peak lying near the zero error line
Fig. 7c). In addition, we performed the residual analysis and observed
hat the residuals are random in nature, and most of the residuals lie
ithin the ± testing RMSE values (Fig. 7d).

Finally, we compared the performance of P2CA-GAM-ID with the
rimary ALE algorithms (such as S-SVR, Z-SVR, R-SVR, S-GPR, Z-GPR,
10
nd R-GPR) and other algorithms that uses ALE dataset (such as ResTT)
Table 4). We found that the P2CA-GAM-ID outperforms most of the
rimary algorithms. However, ResTT emerges as the best algorithm
ver the ALE dataset.

.5. Limitations and future work

In this study, we proposed a novel approach by coupling P2CA and
AM to address a regression problem. P2CA was utilised to handle
issing values in input features, effectively managing their impact on

he model. However, it is important to note that excessive missing val-
es within a single feature can lead to non-convergence and instability
uring the training of GAM. Further investigation is needed to explore
trategies for handling such scenarios to ensure robust and stable model
erformance. Additionally, the datasets used for evaluating the model’s
erformance assume time-invariance. However, in real-life scenarios,
ensor performance may degrade over time due to the aging effect.
his introduces a challenge in maintaining accurate results. It is crucial
o consider periodic sensor maintenance or routine updating of the
raining datasets to account for these changes and ensure the continued
ccuracy and reliability of the model.

The successful application of coupling P2CA and GAM for accurately
redicting the 𝑘−barriers in intrusion detection and prevention opens
p several avenues for future research. Presented below are a range of
hought-provoking and strategic recommendations for future work:

• To enhance the practical applicability of our approach, future
research should focus on developing methodologies to effectively
handle excessive missing values in individual features during
GAM training.

• Furthermore, investigating techniques to incorporate the tem-
poral dynamics of sensor performance and integrating sensor
maintenance strategies into the modelling process will contribute
to more accurate and reliable results in real-world settings.

• One promising direction is to explore the potential of nature-
inspired algorithms for optimising hyperparameters in this con-
text. Although our study utilised BO, there is a growing body
of research on advanced optimisation algorithms that could offer
additional benefits in optimising the hyperparameters of the pro-
posed model. The effectiveness of new types of hybrid heuristics,
metaheuristics, adaptive algorithms, self-adaptive algorithms, is-
land algorithms, goat search algorithm, and polyploid algorithms
has been demonstrated in various fields, including online learn-
ing, scheduling, multi-objective optimisation, transportation,
medicine, data classification, and more (De, 2022; Zhao and
Zhang, 2020; Dulebenets, 2021; Pasha et al., 2022; Gholizadeh
et al., 2021; Dulebenets et al., 2018; Rabbani et al., 2022). Specif-
ically, these algorithms could be explored to find optimal hyper-
parameter settings that improve the accuracy and robustness of
the intrusion detection and prevention system.
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Fig. 7. (a) Illustration of the BO process for the optimisation of the hyperparameters, (b) linear regression plot between the observed and model predicted values. The shade of
blue represents the 95% confidence interval, (c) error histogram analysis using 10 bins, and (d) residual plot. The dashed line illustrates the ± testing RMSE value.
Table 4
Comparison of the performance of P2CA-GAM-ID on publicly available datasets other than intrusion detection.

Performance
metrics

ALE algorithms (Singh et al., 2020, 2021a) ResTT
(Chen et al., 2022)

P2CA-GAM-ID
(This study)S-SVR Z-SVR R-SVR S-GPR Z-GPR R-GPR

R 0.80 0.81 0.82 0.74 0.72 0.71 0.86 0.82
RMSE [m] 0.23 0.20 0.15 0.22 0.23 0.23 0.18 0.20
By addressing these challenges, we can improve the robustness and
long-term viability of the P2CA-GAM coupling approach for regression
problems and enhance its real-world applicability in domains where
data quality and temporal dynamics are significant considerations.

7. Conclusion

In this study, we proposed a novel regression-based algorithm for
fast intrusion detection and prevention by coupling P2CA and GAM. We
utilise the publicly available synthetic intrusion detection datasets (i.e.,
LT-FS-ID, AutoML-ID, and FF-ANN-ID) to test the model’s performance.
All these datasets are widely used for the prediction of 𝑘−barriers using
WSNs. We found that the proposed approach gives excellent results for
all three datasets in terms of accuracy, hence eradicating the need for
scenario-specific algorithms for the accurate prediction of 𝑘−barriers.
Further, it also outperforms various benchmark algorithms such as
ANN, RF, GRNN, RBN, and ERBN.

For a more robust conclusion, we also tested the model performance
over other problem domains of WSNs. We used the publicly available
sensor node localisation ALE dataset for testing the performance of the
proposed approach. We found that the proposed algorithms outperform
the primary results over ALE datasets. This study is a step towards a
11
single algorithm solution for a multi-scenario-based intrusion detection
problem. The proposed technique can be used for near-real-time border
surveillance.
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Appendix

See Table A.1

Table A.1
List of abbreviations.

ANFIS Adaptive Neuro-FIS

AutoML Automated Machine Learning
ALE Average Localisation Error
BO Bayesian Optimisation
BDT Binary Decision Tree
BSM Binary Sensing Model
B-EL Boosting Ensemble Learning
BEs Boundary Effects
C.I Confidence Interval
C-GPR Centre-mean-GPR
DBNs Deep Belief Networks
EFNNs Evolving Fuzzy Neural Networks
ERBN Exact Radial Basis Neural Network
FC-FF-ID Fully Connected Feed Forward Intrusion

Detection
GP Gaussian Process
GPR Gaussian Process Regression
GAM Generalised Additive Model
GRNN Generalised Regression Neural Network
GBMs Gradient Boosting Machines
LR Linear Regression
ML Machine Learning
maxNumSplits Maximum Number of Splits
NS-2.35 Network Simulator-2.35
NS-GPR Non-standardise GPR
numTrees Number of Trees
PDP Partial Dependency Plot
PCA Principal Component Analysis
PCs Principal Components
P2CA Probabilistic PCA
PDF Probability Density Function
RBN Radial Basis Neural Network
RF Random Forest
RoI Region of Interest (RoI)
S-GPR Scale-GPR

(continued on next page)
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Table A.1 (continued).

ANFIS Adaptive Neuro-FIS

SNs Sensor Nodes
SEs Shadowing Effects
SD Standard Deviation
SVR Support Vector Regression
WoS Web of Science
WSNs Wireless Sensor Networks
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