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 A B S T R A C T

Training deep learning (DL) models requires extensive data, particularly for soil moisture prediction, where 
large volumes of in situ measurements are needed to prevent overfitting. To address this challenge, we propose 
a customised transfer learning framework that adapts a pre-trained DL model to a new study site with a 
different climate. Specifically, we fine-tune a fully connected feed-forward neural network, originally trained 
on a large dataset from a humid subtropical region (source domain), using limited data from a semi-arid 
region (target domain). The proposed framework leverages nine input features extracted and generated from 
Sentinel-1/2 and Shuttle Radar Topographic Mission (SRTM) images through a linear data fusion technique. 
We systematically evaluate the performance of the proposed framework against ten benchmark algorithms. 
We observed that the proposed framework outperforms all benchmark algorithms, achieving a correlation 
coefficient (R) of 0.81, a root mean square error (RMSE) of 0.05 m3∕m3, and a bias of 0.02 m3∕m3 on the 
target domain. Particularly, this is achieved using 55% less in situ data compared to the source domain. To 
ensure reliability and robustness, we conduct comprehensive analyses, including error histogram, residual, 
uncertainty, spatial distribution, ablation, statistical, and complex time complexity analyses. Throughout each 
evaluation, the proposed framework consistently exhibits a reliable and robust performance. The findings of 
this study hold promise in facilitating accurate surface soil moisture estimation, particularly in data-scarce 
regions.
1. Introduction

Surface soil moisture is important to understand the dynamics be-
tween numerous processes occurring at the air-land interface (Singh 
and Gaurav, 2024; McColl et al., 2017). Traditional methods such as 
oven drying, neutron probe, gamma rays probe, time domain reflec-
tometry, and frequency domain reflectometry are useful in estimating 
the point measurement of surface soil moisture (Singh et al., 2023b.). 
Although these techniques provide accurate measurements, they are 
tedious and time-consuming. Remote sensing, particularly Synthetic 
Aperture Radar (SAR) microwave images, is widely used for large-scale 
soil moisture estimation (Efremova et al., 2021; Baghdadi et al., 2004; 
Mirsoleimani et al., 2019; Zhu et al., 2020, 2022).
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Numerous inversion-based backscattering models have been devel-
oped to estimate the surface soil moisture information from SAR images 
directly (Oh et al., 1992, 2002; Oh, 2004; Dubois et al., 1995; Fung 
et al., 1992; Attema and Ulaby, 1978). These models are directly 
applied and inverted using quad-polarised SAR images to estimate soil 
permittivity and consequently soil moisture information. A modified 
version of these models is employed when only dual-polarised images 
are available (Sahebi and Angles, 2010; Joseph et al., 2010; Singh et al., 
2020; Shen et al., 2023). The major issue with the usage of these models 
is that they do not provide consistent performance across different cli-
mate regions. In a recent study, Singh et al. (2020, 2022) demonstrated 
that the modified version of these models yields satisfactory results in 
a semi-arid region where the soil moisture ranges between 0 and 0.30 
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Fig. 1. Flowchart of the transfer learning framework.
Fig. 2. (a) Schematic of the random-grid sampling design used in this study for in situ measurements. (b) A calibrated time domain reflectometer (TDR) and a handheld GPS unit 
were used for the measurements.
m3∕m3, while the same model fails to estimate soil moisture accurately 
in humid sub-tropical regions, where the soil moisture ranges between 
0.10 and 0.50 m3∕m3. This persistent limitation is primarily rooted in 
a fundamental assumption of these models, which restricts their usage 
to regions where soil moisture is > 0.35 m3∕m3. Subsequently, Singh 
and Gaurav (2023) proposed a data-driven framework to estimate soil 
moisture in high soil moisture regions by leveraging deep learning, data 
fusion, and large in situ observations. They found that the proposed 
framework accurately estimates surface soil moisture in humid sub-
tropical regions using input features extracted from publicly available 
satellite images. However, testing this model across other climatic 
regions is very challenging due to the costs involved in collecting in situ 
soil moisture samples, which limits its usage in large-scale applications.

An intelligent approach to address this limitation is by transferring 
the learning from an existing model trained with extensive datasets, 
referred to as the source domain, to train a new model in a different 
climatic zone with limited in situ observations, known as the target 
domain. This transfer of parameters serves as prior knowledge for 
the target domain, thereby leveraging the potential of the pre-trained 
model to extend the application of the source domain model to larger 
areas, which is crucial for global soil moisture estimation. The success 
of transferring the learning parameters highly depends on the similarity 
between the tasks in the source and target domains. For instance, in 
the context of soil moisture estimation, the task in the source domain 
2 
might involve utilising extensive in situ observations from study site 
A, while in the target domain, the challenge could be in estimating 
soil moisture with limited in situ observations from study site B. It is 
important to note that study sites A and B may have different climate 
settings. Only a few transfer learning approaches have been proposed 
in the field of soil moisture estimation, leaving it largely unexplored. 
For instance, Li et al. (2021) introduced a transfer learning framework 
to enhance Soil Moisture Active Passive (SMAP) soil moisture retrieval 
(target domain) by utilising a pre-trained model from the European 
Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 
(ERA5)-land (source domain). In Hemmati and Sahebi (2024), a one-
dimensional convolutional neural network with an integrated attention 
module was first trained on the global ISMN dataset and then fine-tuned 
on the in situ samples collected across the Karaj watershed in Iran. 
The input vector comprised 11 features: Sentinel-1 VV/VH backscatter 
statistics (mean, standard deviation, 5th and 95th percentiles), day-of-
year (DOY), NDVI (from Sentinel-2), and local incidence angle. They 
found that the fine-tuned version of the transfer learning model out-
performs several benchmark algorithms as well as the baseline transfer 
learning model. Recently, Zhu et al. (2024) proposed a cross-resolution 
transfer learning framework for the estimation of soil moisture from 
a single sensor (e.g., Sentinel-1 images). In the source domain, the 
task involves the estimation of soil moisture at a coarser resolution (9 
km), while in the target domain, it pertains to soil moisture estimation 
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Fig. 3. Study area map of the target domain (Bhopal). Symbols of different shapes and colors represent the locations of in situ soil moisture measurements. Field photographs 
(b)–(e) illustrate the ground conditions at the time of measurement.
at finer resolutions (0.1, 0.5, and 1 km). In all the above-mentioned 
studies, the transfer learning framework was utilised to enhance the 
accuracy of soil moisture retrieval at the same study site. In this study, 
we propose a transfer learning framework to leverage the efficiency 
of existing pre-trained models in data-abundant regions for developing 
a model to estimate surface soil moisture in different climate regions, 
where in situ observations are limited. The climatic heterogeneity often 
induces shifts in feature distributions, known in the transfer-learning 
literature as ‘‘covariate shift’’ (He et al., 2024). In such scenarios, fine-
tuning the baseline model is essential to account for differences in soil 
moisture distributions. The main contributions of this study are ordered 
as follows:

1. To analyse how the individual impact of each input feature 
changes when applied to different climate settings.

2. Assess whether model parameters or learned representations can 
be effectively transferred to the target domain.

This manuscript is divided into four sections. Section 2 discusses 
the datasets used, followed by methods used for feature importance, 
association, sensitivity analysis, and model development. Sections 3
and 4 present the experimental results and discuss the performance of 
the proposed transfer learning framework. Finally, Section 5 concludes 
the main findings of this study.
3 
2. Material and methods

This section discusses the datasets used to train the proposed trans-
fer learning framework. It covers feature preprocessing and generation, 
followed by the evaluation of feature importance, association, and 
sensitivity, and concludes with the model development process. The 
comprehensive methodology is depicted in Fig.  1.

2.1. In situ and satellite datasets

We conducted two field campaigns in Bhopal, one in January 2019 
and the another in October 2022, to measure surface soil moisture using 
a calibrated time domain reflectometer (TDR). Measurements were 
obtained from the topsoil layer at a depth of 5 cm (Singh and Gaurav, 
2023). This depth was determined based on the radar penetration 
depth module proposed by Singh et al. (2018, 2019), ensuring that 
the SAR signal effectively illuminated and recorded the backscatter 
value at that specific depth. More details on the calibration process 
can be found in Singh et al. (2020). For sampling, we employed a 
Universal random grid sampling approach. We superimposed a square 
grid with dimensions of 3 km × 3 km on the study area. Within each 
randomly selected grid cell, we identified a region equivalent in size 
to the final processed satellite pixel (60 m × 60 m) exhibiting low to 
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Table 1
Details of the Sentinel-1/2 images used in this study.

Sentinel-1

 Date (mm/dd/yyyy) Pass Polarisation Incidence angle (Near, Far) Pixel size (m × m)  
 01/17/2019 Descending Dual (VH, VV) (30.83◦, 46.07◦) 10 × 10  
 01/29/2019 Descending Dual (VH, VV) (30.83◦, 46.32◦) 10 × 10  
 10/16/2022 Descending Dual (VH, VV) (30.84◦, 46.19◦) 10 × 10  
 10/28/2022 Descending Dual (VH, VV) (30.83◦, 46.18◦) 10 × 10  

Sentinel-2

 Date (mm/dd/yyyy) Orbit number and direction Bands Wavelength (nm) Spatial Resolution (m) 
 1/17/2019 62, Descending B8, B4 646–685, 774–907 10  
 1/28/2022 62, Descending B8, B4 646–685, 774–907 10  
medium heterogeneity (Fig.  2). We collected in situ measurements at 99 
locations and recorded their coordinates using a Garmin GPSMAP 64s 
handheld GPS device (Fig.  3). At these locations, we randomly collected 
8–12 measurements within the pixel area and then averaged them to 
obtain a representative value for that location. This averaging process 
minimises spatial heterogeneity within the pixel, allowing for a direct 
point-to-pixel comparison to validate the proposed model (Ryan et al., 
2017).

We used publicly accessible Sentinel-1 (SAR) and Sentinel-2 (opti-
cal) images, along with a DEM derived from the Shuttle Radar Topo-
graphic Mission (SRTM) to extract various input features for training 
the proposed model. We downloaded Sentinel imagery from the Euro-
pean Space Agency’s official website and the void-filled SRTM DEM (at 
1 arc-second resolution) from the U.S. Geological Survey (USGS) web-
site (https://earthexplorer.usgs.gov). In this study, we utilised level-1 
GRD dual-polarised (i.e., VV+VH) Sentinel-1 and bottom-of-atmosphere 
corrected level-2 A Sentinel-2 images, both at a spatial resolution of 
10 × 10 m. Detailed descriptions of the Sentinel images used in this 
study are provided in Table  1. 

2.2. Image processing and feature extraction

We used the publicly available Sentinel Application Platform (SNAP 
v8.0) for pre-processing raw Sentinel-1 images. Our methodology com-
prised radiometric calibration, multi-look (with a factor of 6) cor-
rection, speckle noise reduction, and terrain correction, performed 
sequentially to enhance the raw Sentinel-1 images. These systematic 
procedures facilitated the generation of backscatter images for both 
VV and VH polarisations, refined to a grid size of 60 m. This grid 
size resulted from the multi-looking process, which averages adjacent 
elongated pixels into precise square pixels of 60 m by multiplying the 
original pixel size with the multi-looking factor. Employing the linear 
data fusion technique, we derived two synthetic features, VH/VV and 
VH-VV, from VV and VH (Ittner and Schlosser, 1996). These features 
exhibit higher sensitivity towards the dielectric and geometric proper-
ties of soil (Singh et al., 2021; Greifeneder et al., 2018). Additionally, 
the SAR incidence angle from Sentinel-1 images significantly influences 
satellite-derived soil moisture (Autret et al., 1989). To account for 
the morphology, topography, and spatial dependencies of the study 
area, we considered elevation and geolocation variables (i.e., latitude 
and longitude) as input features (Lin et al., 2006; Tenenbaum et al., 
2006; Murphy et al., 2009; Fathololoumi et al., 2020; Santi et al., 
2016). Moreover, to address the impact of vegetation on soil moisture 
estimation, the Normalised Difference Vegetation Index (NDVI) from 
Sentinel-2 images were included (Farrar et al., 1994; Felegari et al., 
2022). This involved calculating the Normalised Difference Vegetation 
Index (NDVI) by taking the difference between the near-infrared and 
red bands and dividing it by their sum, resulting in an NDVI image with 
a spatial resolution of 10 m. It is crucial to note that NDVI values range 
from −1 to +1, with higher values indicating healthier vegetation. 
Subsequently, to standardise all input features to a common level, we 
normalised them using the z-score scaling technique after applying 
the nearest neighbour resampling to achieve a uniform resolution of 
4 
60 m × 60 m. Since all input features are defined on a 60 m ×
60 m grid, the resulting soil moisture map is likewise produced at 
a 60 m × 60 m resolution. Finally, we divided the entire dataset 
in a 60:10:30 ratio (Baier et al., 2021) for training, validation, and 
testing of the proposed framework using the Mersenne Twister random 
generator (Matsumoto and Nishimura, 1998).

2.3. Feature importance, association, and sensitivity

We assess the relevance of the input features in predicting surface 
soil moisture information. To accomplish this, we employ the regression 
ensemble tree method and gauge the importance score of each feature. 
Our approach involves utilising the LSBoost algorithm to train 500 
regression trees (𝑛) with a fixed learning rate (𝜁) of 1 (Kumar et al., 
2024). We consider traditional decision trees, specifically decision 
stumps, as weak learners. LSBoost operates by sequentially training one 
weak learner at a time while concurrently identifying its limitations 
to generate a new weak learner (𝛽𝑖). This process is accompanied 
by calculating corresponding weights (𝜂𝑖). Subsequently, the current 
model (𝑊 𝐿

𝑖 ) is updated to address the shortcomings of the preceding 
weak learner (𝑊 𝐿

𝑖−1), as shown in Eq.  (1); 

𝑊 𝐿
𝑖 = 𝑊 𝐿

𝑖−1 + 𝜁 ⋅ 𝜂𝑖 ⋅ 𝛽𝑖 (𝑖 = 1, 2, 3,… , 𝑛) (1)

Iteratively, the LSBoost algorithm incorporates each weak learner 
into the current model, generating an ensemble of weak learners, 
denoted as 𝑊 𝐿

𝑚 , ultimately constituting a single strong learner. These 
steps are followed by estimating the comprehensive changes in node 
risk caused by splitting on each feature. This estimation involves nor-
malising the changes concerning the total number of branch nodes 
(𝑁𝑡𝑜𝑡𝑎𝑙). Leveraging this normalised data, we calculate the importance 
score. The node changes risk (𝛥𝑁𝑅) are mathematically calculated 
according to Eq.  (2); 

𝛥𝑁𝑅 =
𝑃𝑁𝑅 − (𝐶1

𝑁𝑅 + 𝐶2
𝑁𝑅)

𝑁𝑡𝑜𝑡𝑎𝑙
(2)

where 𝑃𝑁𝑅, 𝐶1
𝑁𝑅, and 𝐶2

𝑁𝑅 denote the parent and two children node 
risks, respectively. These values are computed by multiplying the node 
probability with the mean square error of the corresponding node.

Additionally, we evaluate the correlation among input features 
using the same regression tree ensemble learning model. The fea-
ture association matrix is computed following the method described 
in Singh and Gaurav (2023). Correlated features can adversely affect 
the stability of the machine learning model, increasing its susceptibility 
to uncertainty. The matrix entries represent the similarities between 
decision rules that split on individual observations, with values ranging 
from 0 to 1. Values closer to 1 indicate a high correlation between the 
corresponding features.

Unlike feature importance analysis, which only provides discrete 
importance scores without detailing the exact impact of each feature 
(𝑭  = 𝑓1, 𝑓2, . . . , 𝑓𝑚, where 𝑚 is the total number of input features), 
we leveraged the mapping function (𝜒) of the regression tree ensem-
ble model to quantify the impact (whether decreasing, increasing, or 
undulating). This was achieved by marginalising, or averaging out, the 

https://earthexplorer.usgs.gov
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Fig. 4. Schematic representation of the fined-tuned neural network architecture in which the parameters learned from the training over a relatively large source domain (i.e., the 
Kosi Fan) are transferred to a smaller target domain (i.e., Bhopal) having sparse data for the generalisation of the soil moisture estimation. A general architecture for the target 
domain is presented, enabling the acquisition of hyperparameters and model parameters from the source domain.
Fig. 5. Climatic zone classification of the study sites. The study sites are marked by black boundaries (Sources: ICAR-CRIDA (2013) and Singh and Gaurav (2024)).
 

impact of all other features. To do so, we utilise two complementary 
techniques: individual conditional expectation (ICE) curves, and partial 
dependency plots (PDP) (Goldstein et al., 2015). These techniques 
are frequently used to investigate the influence of the feature set on 
the response variable (Singh et al., 2021; Singh and Gaurav, 2023; 
Singh et al., 2023a). ICE curves demonstrate the effect of each feature 
at individual observations, while PDP provides an overall view of a 
feature’s impact by averaging the effects of other features. The PDP 
for the 𝑚th feature is derived using Equation (3). 

𝜒(𝑓𝑚) ≈
1

𝑁𝑜𝑏𝑠

𝑁𝑜𝑏𝑠
∑

𝑖=1
𝜒(𝑓𝑚,𝑭 − 𝑓𝑚) (3)

where 𝑁𝑜𝑏𝑠 denotes the total observations. The ICE curves are obtained 
by disaggregating Equation (3). A detailed explanation of the feature 
sensitivity technique used in this study can be found in Singh et al. 
(2024).
5 
2.4. Transfer learning model

Transfer learning involves adapting the existing learning or knowl-
edge from a source domain to a target domain (Fig.  4). It involves 
optimising the target domain model parameters 𝛩target, using the source 
domain model parameters 𝛩source, and additional target domain data. 
This can be mathematically expressed as: 
𝑚𝑖𝑛𝛩targettarget(𝑓 (𝛩source)) (4)

This equation signifies minimising the target domain loss, target(⋅), 
by adapting the source domain parameters to the target domain through
the transfer function 𝑓 (⋅). In this study, we adopted the deep learning 
and data fusion framework proposed by Singh and Gaurav (2023), 
which utilises a fully connected feed-forward neural network model as 
the source domain model. Their framework incorporates nine satellite-
derived input features: VH, VV, VH/VV, VH-VV, incidence angle, 
NDVI, elevation, longitude, and latitude. Through extensive training 



A. Singh et al. Engineering Applications of Artiϧcial Intelligence 159 (2025) 111636 
with 224 in situ datasets, they developed a 9:5:5:5:1 neural network 
structure to estimate surface soil moisture at the Kosi Fan (referred 
to as Task A). We extracted crucial information from this model, 
including its hyper and model parameters, and utilised them as the 
initial conditions for training a separate model (referred to as Task 
B) aimed at estimating soil moisture in the climatically distinct re-
gion, Bhopal (Fig.  5). It is important to note that the choice of the 
transfer function and optimisation strategy may vary depending on 
the unique characteristics of both the source and target domains, as 
well as the nature of the available data. For Bhopal, we adopted the 
same 9:5:5:5:1 architecture with a minor modification in the activation 
function at the input layer. Instead of the linear ‘‘purelin’’ activation 
used by Singh and Gaurav (2023), we adopted the hyperbolic tangent 
sigmoid (‘‘tansig’’) activation to setup the model for Bhopal, which 
introduces non-linearity to better capture soil moisture fluctuations in 
this semi-arid region and significantly reduces model error. Instead 
of initialising the model parameters (weights and biases) randomly, 
we leveraged the optimal parameters from Singh’s model as a starting 
point. This new model was then further refined by fine-tuning it on the 
limited dataset of Bhopal (reduced by 55% as compared to the Kosi) us-
ing the Levenberg–Marquardt backpropagation algorithm (Marquardt, 
1963). By leveraging the inherent learning of the pre-existing model 
and enhancing it through adaptation to the new location, the updated 
model gains a new transformative capability. This process effectively 
integrates insights from both domains into a unified (or joint) model. 
The detailed pseudocode of the proposed transfer learning framework 
is presented in the Algorithm 1. 

3. Results

3.1. Feature importance and sensitivity analysis

The feature importance analysis reveals significant insights into 
the mapping of surface soil moisture by using satellite-derived input 
features. It is worth noting that VV emerges as the foremost influential 
input feature, closely followed by latitude, incident angle, and longi-
tude (Fig.  6a). Surprisingly, synthetic features such as VH/VV, and DEM 
exhibit greater relevance than NDVI, highlighting their crucial role 
in the process. Conversely, VH-VV appears to be the least significant 
feature. Moreover, the feature association estimate reveals an absence 
of correlation among input features, suggesting their independent con-
tributions to mapping surface soil moisture (Fig.  6b). This implies that 
all input features can be effectively utilised in the process without 
redundancy or overlapping influence.

The feature sensitivity analysis, conducted via PDP plots and ICE 
curves, delineates the individual impact of each feature by isolating its 
effect from other features. We observed a dual behaviour for VH (Fig. 
7). Specifically, certain ICE curves decrease (indicating high VH values 
for low soil moisture), while others increase (suggesting high VH values 
for high soil moisture) between 0.015–0.02. The former points belong 
to measurements taken from vegetated regions, whereas the latter 
belong to measurements taken from barren land. A clear increasing 
trend is observed for VV. Physically, C-band VV backscatter is highly 
sensitive to the soil’s dielectric constant, which increases sharply as 
volumetric water content rises. In wetter soils, the stronger dielectric 
contrast at the air-soil interface and within the pore space causes more 
energy to be scattered back towards the sensor in VV polarisation. 
Thus, the PDP’s positive trend, showing higher predicted moisture with 
increasing VV, is fully consistent with established scattering models 
(e.g., IEM) and numerous experimental studies that link rising VV 
backscatter to higher soil moisture (Singh and Gaurav, 2023). However, 
for both synthetic features, no distinct trend is evident except for a 
slight undulating increase for VH/VV. As for the incident angle, no 
clear trend is observed. NDVI and DEM exhibit a slight increasing trend. 
Furthermore, we observe a clear increasing and decreasing trend with 
latitude and longitude, respectively.
6 
Algorithm 1 Pseudo-code for the transfer learning framework.
1: Definitions:
2:  - Pre-trained Model: A model that has been trained on a large 
dataset for soil moisture estimation.

3:  -Task A: Soil moisture estimation at Kosi Fan (humid sub-
tropical) with large in situ measurements

4:  - Source Domain: The domain from which the pre-trained model 
is obtained (Task A - Kosi Fan).

5:  - Fine-tuning: Optimising pre-trained model parameters for 
better performance on a smaller dataset.

6:  -Task B: Soil moisture estimation at Bhopal (semi-arid) with 
limited in situ measurements

7:  - Target Domain: The domain to which the pre-trained model is 
adapted (Task B - Bhopal).

8: procedure Extract Details (Task A model)
9:  Extract model architecture, hyperparameters, and model param-
eters

10:  From the 9-5-5-5-1 fully connected feed-forward neural network 
proposed by Singh and Gaurav (2023)

11:  Return optimal hyperparameters and model parameters 
(𝛩𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝐴) and model details

12: end procedure
13: Input:
14:  Pre-trained Model parameters: 𝛩𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝐴 (weights, biases)
15:  Fine-tuning model parameters: 𝛩𝑓𝑖𝑛𝑒_𝑡𝑢𝑛𝑒_𝐵 (weights and biases)
16:  Task A (Source Domain) Dataset: 𝐷𝑡𝑎𝑠𝑘_𝐴 (Kosi Fan - Humid 

Subtropical) ⊳ Optional
17:  Task B (Target Domain) Dataset: 𝐷𝑡𝑎𝑠𝑘_𝐵 (Bhopal - Semi-arid)
18: Output:
19:  Fine-tuned Model for Task B: new_model_B
20: procedure Main
21:  Load Pre-trained Model trained on Task A
22:  pretrained_model_A ← load_pretrained_model_task_A

(𝛩𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝐴)
23:  Modify Pre-trained Model for Task B
24:  new_model_B ← modify_pretrained_model_for_task_B

(pretrained_model_A)
25:  Freeze Layers
26:  freeze_layers(new_model_B) ⊳ Optionally freeze certain layers
27:  Load New Dataset for Task B (Bhopal)
28:  dataset_B ← load_dataset_Bhopal(𝐷𝑡𝑎𝑠𝑘_𝐵)
29:  for each model parameter set 𝛩𝑓𝑖𝑛𝑒_𝑡𝑢𝑛𝑒_𝐵 do
30:  Fine-tune Model for Task B using Levenberg-Marquardt 

backpropagation
31:  fine_tune_model_B(new_model_B,dataset_B, 𝛩𝑓𝑖𝑛𝑒_𝑡𝑢𝑛𝑒_𝐵)
32:  Evaluate Model on Task B
33:  evaluation_results_B ← evaluate_model_B

(new_model_B,dataset_B) ⊳ Evaluate performance
34:  Computing performance metrics (R, RMSE, bias)
35:  end for
36:  Select hyperparameters and model parameters with the best 

performance
37:  Save Trained Model for Task B
38:  save_model_B(new_model_B) ⊳ Save fine-tuned model
39: end procedure
40: Main()

3.2. Performance of the TL-SSM

Once the model is tuned for the target domain (Bhopal), we evaluate 
its training accuracy using the TL-SSM model. We feed the training 
data into the model and recorded the predicted response. We observed 
a strong agreement between predicted and observed values, with an 
R value of 0.83, an RMSE of 0.05 m3∕m3, and zero bias (Fig.  8a). 
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Fig. 6. (a) Feature importance score of the input feature with corresponding box and half-violin plot. NDVI, latitude, and longitude data follow a bimodal distribution, whereas 
the rest of the input features follow a Gaussian distribution. (b) Feature association estimate.
Fig. 7. Plot (a)–(i) illustrates the feature sensitivity analysis of all the input features. The black dot indicates the observation points. The grey lines indicate the individual 
conditional expectation curve, and the thick red line represents the partial dependence curve.
However, high training accuracy does not necessarily ensure high 
accuracy on unseen datasets, as it may result from overfitting to local 
fluctuations in the training data. To mitigate overfitting, we assessed 
the model’s performance on validation data while adjusting model 
parameters. During validation, we noticed a strong alignment between 
predicted and observed data, with an R value of 0.89, an RMSE of 
0.03 m3∕m3, and a bias of 0.02 m3∕m3 (Fig.  8b). A small positive 
bias suggests a slight overestimation of soil moisture by the model. 
Subsequently, we evaluated the model’s performance on unseen testing 
data, finding reasonably good results with an R value of 0.81, an 
RMSE of 0.053 m3∕m3, and a bias of 0.023 m3∕m3, comparable to the 
7 
training accuracy (Fig.  8c). Finally, we reported an overall accuracy (R 
= 0.82, RMSE = 0.05 m3∕m3, and bias = 0.01 m3∕m3) by evaluating the 
model’s performance across the entire dataset, encompassing training, 
validation, and testing sets (Fig.  8d).

To quantify the advantage of our transfer learning framework, we 
conducted a control experiment. We applied the initial model directly 
to the target domain without transferring model parameters from the 
source domain (i.e., with random initial parameters). We used the 
same data split (60:10:30 for training, validation, and testing) for both 
scenarios. This baseline model achieved a lower testing accuracy (R 
= 0.69, RMSE = 0.0593, and bias = 0.03). This result highlights the 
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Fig. 8. Performance of the transfer learning model on the training, validation, testing, and overall datasets (a–d). The dashed line indicates the y=x line.
effectiveness of our proposed framework, which achieves improved 
accuracy on the target domain with 55% less in situ data compared 
to the source domain.

3.3. Error histogram and residual analysis

We performed error histogram analysis to examine the distribution 
of model errors. We computed the error (i.e., observed – predicted) 
for the training, validation, and testing phases, and plotted the error 
histogram using an 11-bin size to denote symmetry (Fig.  9). We ob-
served that the error histogram ranged from −0.099 (in the leftmost 
bin) in the overestimation region to 0.118 (in the rightmost bin) in the 
underestimation region. Subsequently, we fitted a Gaussian distribution 
to the error histogram and discovered that the peak of the Gaussian 
curve precisely aligned with the zero error line. This alignment suggests 
that the majority of errors are centred around zero, indicating a good 
fit model.

Further, we perform residual analysis to assess the robustness and 
reliability of the proposed model (Fig.  10). It enables us to identify 
outliers that could potentially disrupt the model’s performance. Addi-
tionally, it assists in detecting heteroscedasticity, which occurs when 
the residuals exhibit varying variances across different levels of the 
variables. Residual plots serve as a tool for spotting patterns indicative 
of heteroscedasticity. Furthermore, by conducting residual analysis, 
we can ascertain whether the model adequately captures nonlinear 
relationships between the input and response variables. Our observa-
tions reveal that the residuals display stochastic behaviour without any 
8 
Fig. 9. The bar graph depicts the error histogram analysis, with the vertical blue line 
representing the zero error threshold. Areas to the left and right of this line correspond 
to overestimation and underestimation regions, respectively.

discernible pattern, suggesting that no further adjustments are required 

to improve the model’s predictive accuracy.
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Fig. 10. The line plot in the upper panel shows the observed versus predicted soil moisture across the training, validation, and testing phases. The lower panel displays the 
residuals between observed and fitted values, with the dashed line representing the overall RMSE values.
4. Discussion

4.1. Comparison with benchmark algorithms

For a robust and unbiased evaluation, we compared our transfer-
learning model against ten well-established benchmarks chosen to span 
diverse learning paradigms, computational costs, and proven utility 
in remote sensing and hydrological applications. These include kernel 
methods (Gaussian Process Regression (GPR) Williams and Rasmussen, 
1995, Support Vector Regression (SVR) Drucker et al., 1996), neu-
ral networks (Generalised Regression Neural Network (GRNN) Specht 
et al., 1991, Radial Basis Neural Network (RBNN) Lowe, 1989, Exact 
RBN (ERBN) Broomhead and Lowe, 1988), tree-based models (Bi-
nary Decision Tree (BDT) Laurent and Rivest, 1976, Random Forest 
(RF) Breiman et al., 1984), additive models (Generalised Additive 
Model (GAM) Hastie and Tibshirani, 1987), ensemble learning (Boost-
ing EL Zhang and Ma, 2012), and Automated Machine Learning (Au-
toML He et al., 2018). We selected these algorithms for their com-
plementary strengths, ranging from interpretable low-cost models to 
high-capacity learners, and their widespread validation in soil moisture 
and environmental studies (Singh et al., 2023c; Nagar et al., 2023; 
Singh and Gaurav, 2023; Singh et al., 2024).

In addition to traditional metrics such as R, RMSE, and bias, we have 
incorporated advanced criteria, including Akaike Information Criterion 
(AIC), Corrected AIC (AICc), and Bayesian Information Criterion (BIC) 
for a more effective multi-model comparison (Vrieze, 2012; Claeskens 
and Hjort, 2008). These metrics penalise the model that has a high 
number of model parameters, hence the model with the lower value 
is preferred. Each benchmark algorithm was trained on the same train-
ing datasets and subsequently evaluated on the corresponding testing 
datasets. Table  2 report the performance metrics. We observe that the 
proposed transfer learning framework outperforms all ten benchmark 
algorithms with R = 0.82, RMSE = 0.05, and bias = 0.01. RF (R = 
0.56, RMSE = 0.04, and bias = 0.03), GPR (R = 0.47, RMSE = 0.05, 
and bias = 0.05), and AutoML (R = 0.42, RMSE = 0.02, and bias = 
0.04) algorithm ranks second, third, and fourth, respectively. It is worth 
9 
Fig. 11. Boxplot showing the analysis of model errors using ANOVA. The upper and 
lower edges of each box represent the 75th and 25th percentiles, respectively, while 
the line inside each box indicates the median of the samples.

noting that while RMSE reflects the average magnitude of prediction 
errors in the original units, the correlation coefficient captures only 
the strength of the linear relationship, meaning a model that simply 
predicts the mean can achieve a deceptively low RMSE yet still yield 
a near-zero R by failing to capture point-to-point variability. This 
explains why, despite achieving RMSEs of the same order of magnitude, 
low-R methods like GPR (R = 0.47, RMSE = 0.0470) and RF (R = 0.56, 
RMSE = 0.0441) fail to capture the underlying trends or match the low 
error rates achieved by TL-SM (R = 0.82, RMSE = 0.0480). Based on 
AIC, AICc, and BIC, AutoML exhibits the best results with the lowest 
values. ERBN, BDT, and RBNN algorithms perform the worst out of all 
the benchmarks with (R < 0.05).
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Table 2
Comparison of the proposed model with the benchmark algorithm.
 Algorithms  Proposed

(TL-SM)
GPR GRNN BDT GAM RBNN ERBN SVR  Boosting EL

(LSBoost)
RF AutoML  

 R 0.82 0.47 0.06 0.02 0.29 0.02 0.01 0.19 0.20 0.56 0.48  
 RMSE 0.0480 0.0470 0.0531 0.0375 0.0557 0.0531 0.0531 0.0522 0.0521 0.0441 0.0166  
 Bias 0.01 0.05 0.02 0.06 0.03 −0.06 −0.07 0.03 0.04 0.03 0.04  
 AIC 191.82 −233.82 1.3581E+03 −196.54 −171.34 1.31E+03 1.29E+03 −227.77 −175.06 −234.73 −623.41 
 AICc −89.94 −200.89 −192.26 −163.61 −138.41 −247.00 −253.58 −194.85 −139.41 −199.08 −552.04 
 BIC 354.36 −231.02 2.42E+03 −193.73 −168.53 −2.37E+03 2.36E+03 −224.97 −168.06 −227.73 −618.94 
Table 3
Comparison results from the post hoc tests conducted on the models.
 Group A Group B Lower limit A-B Upper limit P-value  
 TL-SM GPR −0.022 0.027 0.076 0.789   TL-SM GRNN −0.047 0.002 0.051 1   TL-SM BDT −0.016 0.033 0.082 0.533   TL-SM GAM −0.042 0.007 0.056 1   TL-SM RBNN −0.128 −0.079 −0.030 1.12e−05  TL-SM ERBN −0.143 −0.094 −0.045 4.12e−08  TL-SM SVR −0.045 0.004 0.053 1   TL-SM Boosting EL −0.033 0.017 0.066 0.992   TL-SM RF −0.040 0.009 0.058 0.999   TL-SM AutoML −0.033 0.016 0.066 0.993   GPR GRNN −0.075 −0.025 0.024 0.854   GPR BDT −0.043 0.006 0.055 1   GPR GAM −0.070 −0.021 0.029 0.961   GPR RBNN −0.156 −0.107 −0.057 1.26e−10  GPR ERBN −0.170 −0.121 −0.072 4.88e−14  GPR SVR −0.072 −0.023 0.026 0.917   GPR Boosting EL −0.060 −0.011 0.038 0.999   GPR RF −0.067 −0.018 0.031 0.985   GPR AutoML −0.060 −0.011 0.038 0.999   GRNN BDT −0.018 0.031 0.080 0.620   GRNN GAM −0.044 0.005 0.054 1   GRNN RBNN −0.130 −0.081 −0.032 5.85e−06  GRNN ERBN −0.145 −0.096 −0.047 1.88e−08  GRNN SVR −0.047 0.002 0.0515 1   GRNN Boosting EL −0.034 0.015 0.064 0.997   GRNN RF −0.042 0.007 0.057 0.999   GRNN AutoML −0.035 0.015 0.064 0.997   ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  

 

 Group A Group B Lower Limit A-B Upper Limit P-value  
 BDT GAM −0.075 −0.026 0.023 0.824   BDT RBNN −0.161 −0.112 −0.063 6.71e−12  BDT ERBN −0.176 −0.127 −0.078 1.46e−15  BDT SVR −0.078 −0.029 0.020 0.727   BDT Boosting EL −0.066 −0.016 0.033 0.992   BDT RF −0.073 −0.024 0.025 0.901   BDT AutoML −0.066 −0.017 0.033 0.991   GAM RBNN −0.135 −0.086 −0.037 9.63e−07  GAM ERBN −0.150 −0.101 −0.051 2.17e−09  GAM SVR −0.052 −0.003 0.047 1   GAM Boosting EL −0.039 0.010 0.059 0.999   GAM RF −0.047 0.003 0.052 1   GAM AutoML −0.039 0.010 0.059 0.999   RBNN ERBN −0.064 −0.015 0.035 0.997   RBNN SVR 0.034 0.083 0.133 2.47e−06  RBNN Boosting EL 0.047 0.096 0.145 1.78e−08  RBNN RF 0.039 0.089 0.138 3.58e−07  RBNN AutoML 0.047 0.096 0.145 1.86e−08  ERBN SVR 0.049 0.098 0.147 6.70e−09  ERBN Boosting EL 0.061 0.110 0.159 1.83e−11  ERBN RF 0.054 0.103 0.152 6.65e−10  ERBN AutoML 0.061 0.110 0.159 1.94e−11  SVR Boosting EL −0.037 0.012 0.061 0.999   SVR RF −0.044 0.005 0.054 1   SVR AutoML −0.037 0.012 0.061 0.999   Boosting EL RF −0.056 −0.007 0.042 0.999   Boosting EL AutoML −0.049 −0.0001 0.049 1   RF AutoML −0.042 0.007 0.056 1  
Fig. 12. Statistical comparison of the benchmark algorithm. The yellow vertical patch indicates the comparison interval of the TL-SM algorithm.
We also performed ANOVA statistical analysis to compare all the 
benchmark algorithms. We first calculated the errors of all ten bench-
mark algorithms by averaging 30 independent runs for each algorithm. 
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We then conducted a normality test on the error distribution for each 
benchmark algorithm using Kolmogorov–Smirnov analysis (Smirnov, 
1948; Berger and Zhou, 2014). We found that the model error follows 
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Fig. 13. Computational time alongside performance metrics (R, RMSE, and Bias) in a bubble plot. Each circle’s size corresponds to the computation time of individual algorithms.
a normal distribution for all algorithms. To analyse the data, we per-
formed one-way ANOVA with subsequent Tukey’s Honestly Significant 
Difference (HSD) test (Abdi and Williams, 2010). This method com-
pares the mean errors across various algorithms and compute adjusted 
p-values. These p-values, adjusted for multiple comparisons, provided 
a reliable basis for assessing the significance of differences between 
algorithm performances, thereby improving the precision of our evalua-
tion. To visually analyse the distribution of model errors in the one-way 
ANOVA test, we plotted the box plot of model errors as shown in Fig. 
11. The results of the box plot clearly support the performance metrics 
reported in Table  2. We found that the median error is close to zero for 
TL-SM (proposed), RF, GPR, and AutoML, and farthest from zero for 
RBNN and ERBN. For a better interpretation, we reported the pair-wise 
comparison of all the benchmark algorithms (Table  3). In this table, we 
incorporated the adjusted p-values, providing dependable indicators of 
the significance of the observed variations in algorithm performances. 
To enhance the presentation of the statistical analysis findings, we have 
made an attempt to illustrate the pair-wise comparison graphically (see 
Fig.  12). Within this figure, the blue line delineates the comparison 
interval of the proposed framework, extended by the yellow strip for 
ease of comparison. Any algorithm’s comparison interval touching this 
yellow patch indicates that its performance is not statistically differ-
ent from the proposed one (highlighted in black). Interestingly, only 
the performance of ERBN and RBNN significantly differs from TL-SM 
(highlighted in red).

Evaluating the performance of the proposed algorithm in compari-
son to benchmark algorithms, whether explainable or black-box, should 
not rely solely on performance metrics. Ignoring computational time 
complexity could lead to biased conclusions. For a thorough and fair 
assessment, we computed the computational time complexity of each 
algorithm using a CPU with 64 GB memory, 10 cores, operating at 
3.3 GHz, and utilised a three-dimensional bubble diagram for better vi-
sualisation and interpretation of the outcomes (Fig.  13). We found that 
the computation time of the proposed framework, ERBN, SVR, Boosting 
EL, and RF is nearly the same (between 2–3 s). The time complexity 
of the proposed framework is represented as (𝑚𝜁𝑙1 + 𝜁𝑙1 ⋅ 𝜁𝑙2 + ⋯), 
where 𝑚 denotes the number of features, and 𝜁𝑙 𝑖 indicates the number of 
neurons in layer 𝑖 (Williams, 2007). Notably, GAM exhibits the highest 
computational time, while ERBN exhibits the second-highest.
11 
4.2. Uncertainty analysis of the TL-SSM

We conducted a rigorous uncertainty analysis on the proposed trans-
fer learning framework to assess its reliability under varying conditions. 
This analysis involved scrutinising the model’s response to fluctuations 
in input features. Specifically, we introduced small uncertainties, rang-
ing from ±5% to ±10%, individually into each input feature while 
holding all others constant. Realistic ±5-10% uncertainties in SAR 
backscatter and NDVI stem from speckle noise, radiometric calibra-
tion drift, atmospheric effects, DEM vertical errors, and resampling 
artefacts. Testing under these perturbations confirms that our transfer-
learning framework remains robust to the combined impact of such 
satellite-derived measurement errors. The resulting variations in model 
output were recorded, and the percentage changes are presented in 
Fig.  14. Our investigation revealed that the percentage change in soil 
moisture spanned from −16.7% to +21.8% for ±5% and ±10% un-
certainties. Among the features, VH demonstrates exceptional stability, 
exhibiting a marginal percentage change in soil moisture ranging from 
−1.4% to 2.5%. DEM followed as the second most stable feature, with 
a percentage change of 1.2% to 4.3%. Conversely, NDVI emerged as 
the most susceptible feature, displaying significant sensitivity to small 
uncertainties. Additionally, the synthetic feature VH-VV ranked second 
among the highly prone features. Crucially, VV, the most relevant 
feature, showcased a percentage change in soil moisture ranging from 
−5.4% to 1.4% under small uncertainties. The uncertainty analysis 
highlights the robustness of the proposed transfer learning framework, 
particularly with respect to the stability of certain input features. The 
findings provide valuable insights for optimising model performance 
and enhancing its reliability in practical applications. By identifying 
features that are susceptible to uncertainties, this study provides guide-
lines for refining the framework to better accommodate real-world 
variability.

4.3. Spatial distribution analysis

When dealing with spatial machine learning, particularly regarding 
surface soil moisture, it becomes crucial to evaluate the dependency 
of the proposed model on local factors such as topography, soil com-
position, vegetation cover, and land use, all of which significantly 
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Fig. 14. Performance evaluation of the proposed model under input feature uncertainties.
influence soil moisture levels (Merz and Plate, 1997). Conducting a 
spatial analysis allows for the identification of these variations, facil-
itating the development of more precise predictive models that can 
accommodate spatial heterogeneity. To ensure reliable soil moisture 
predictions, the model should ideally exhibit spatial independence. 
To achieve this, we initially generated thirty independent datasets 
from the available data for training, validation, and testing purposes 
using the Mersenne Twister random generator. This involved inputting 
thirty distinct random seeds into the model to select in situ locations 
for training, validation, and testing sites, resulting in thirty unique 
scenarios.

We proceeded to retrain the proposed model using these thirty 
training datasets and assessed its performance on the corresponding 
validation and testing datasets. Table  4 reports the training, validation, 
testing, and overall accuracy for each scenario. We noticed only mi-
nor variations in the performance of the proposed model, indicating 
its robustness and stability. We observe the following variations in 
the performance metrics for training (0.81 ± 0.079, 0.05 ± 0.010, 
and 0.00 ± 0.008), validation (0.75 ± 0.110, 0.05 ± 0.017, and 
0.01 ± 0.018), testing (0.70 ± 0.048, 0.06 ± 0.008, and −0.002 ±
0.016), and overall accuracy (0.76 ± 0.056, 0.05 ± 0.006, and 0.00 ±
0.007). The stability observed in the spatial distribution analysis sug-
gests that the relationships between soil moisture and environmental 
factors remain consistent across different terrains. This highlights the 
reliability of the observed patterns and relationships across diverse 
geographic regions and topographical variations. It indicates that lo-
cal factors do not substantially influence the proposed model, thus 
affirming its applicability across various geographical or geometric 
conditions. Furthermore, this stability not only reinforces the concept 
of the transfer learning model but also improves its interpretability. 
Consequently, stakeholders can make informed decisions based on 
dependable predictive insights.

4.4. Ablation analysis

We conducted an ablation analysis to thoroughly examine the con-
tribution of individual components within the model. This analytical 
approach aids in identifying the essential driving elements of the 
model. In this process, we generated various scenarios by altering 
input features and model architecture. In the input feature ablation, 
we explored eight combinations of input features based on their rele-
vance in predicting soil moisture. For model architecture ablation, we 
investigated six different scenarios involving the selective removal or 
alteration of hidden layers and the number of neurons within each 
layer. Across these fourteen scenarios, we recorded training, valida-
tion, testing, and overall accuracy using R, RMSE, and bias as per-
formance metrics (Table  5). Subsequently, we assigned performance 
ratings for each metric (i.e., R-rating, RMSE-rating, and bias-rating) 
and reported the overall rating. Regarding input feature ablation, our 
findings indicate that the proposed model yields the best results when 
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all nine inputs are considered. Additionally, combinations involving 
radar backscatters (i.e., {VV, VH} and {VV, VH, VH-VV, and VH/VV}) 
also demonstrate strong performance, with an overall rating in the ‘very 
good’ category. Concerning architecture ablation, our results reveal that 
the proposed model with three hidden layers, each consisting of five 
neurons, outperforms all other considered scenarios.

4.5. Comparison between source and target domain

We observed a slight variation in the predictive capacity of the 
input features when applied across two distinct climate settings. In the 
source domain, longitude and VV emerge as the most relevant features 
for mapping soil moisture. However, in the target domain, while these 
same two features remain most relevant, VV exhibits a higher feature 
importance score compared to longitude. The discrepancy likely arises 
from the strong influence of topography on drainage patterns in the 
Kosi Fan, which increases the relevance of longitude. In Bhopal, where 
such terrain complexity is lacking, VV becomes the more dominant 
feature. Additionally, the contribution of NDVI appears to be less 
prominent in both the source and target domains.

The individual impacts of all nine input features on soil moisture 
exhibit a remarkable similarity between the source and target domains. 
We note consistent patterns such as the dual behaviour of VH and 
the increasing trend of VV across both domains. Additionally, features 
like VV/VH, VH-VV, incidence angle, and NDVI display an undulating 
nature in both contexts. Moreover, DEM shows a slight increasing 
trend, while longitude experiences a sharp decrease in both domains. 
However, we observe a slight deviation concerning latitude, which 
decreases in the source domain but increases in the target domain. 
Regarding the performance of the deep learning model, we observe a 
consistent level of effectiveness across both domains.

5. Conclusion

This study introduces a novel transfer learning framework customise 
for soil moisture estimation, demonstrating its efficacy in extrapolating 
insights from a well-established model trained on a source domain 
to accurately predict soil moisture dynamics in a target domain. By 
leveraging the initial learning parameters of the existing model, we 
showcase the ability to achieve precise estimations even in scenarios 
with limited datasets or in regions with sparse data availability.

Our investigation highlights the effectiveness of features extracted 
from Sentinel-1/2 and SRTM satellite imagery in capturing the surface 
soil moisture dynamics. Our analysis reveals a striking consistency 
in the behaviour of input features across both source and target do-
mains, enhancing the generalisation capability of our approach and 
facilitating its broader applicability. Despite the inherent differences 
in climatic settings between the source (Kosi) and target domains 
(Bhopal), our proposed framework consistently delivers accurate soil 
moisture estimations (with 55% less datasets as compared to the source 
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Table 4
Results of the spatial distribution analysis using thirty independent sets of training, validation, and testing datasets.
 Scenarios/Seeds Training Validation Testing Overall

 R RMSE Bias R RMSE Bias R RMSE Bias R RMSE Bias  
 1 0.83 0.05 0 0.89 0.03 0.02 0.81 0.053 0.023 0.82 0.05 0.01   2 0.71 0.06 0.01 0.89 0.04 −0.03 0.62 0.055 −0.03 0.68 0.06 −0.01   3 0.87 0.04 0 0.81 0.05 −0.02 0.72 0.059 0 0.79 0.05 0   4 0.85 0.04 0 0.80 0.05 0.01 0.60 0.071 0.006 0.78 0.05 0.01   5 0.82 0.05 0.02 0.81 0.04 0.03 0.76 0.075 0.031 0.65 0.06 0.02   6 0.61 0.07 −0.02 0.74 0.07 0.01 0.74 0.05 −0.028 0.64 0.06 −0.02   7 0.89 0.04 0 0.62 0.07 0 0.73 0.081 −0.003 0.76 0.06 0   8 0.84 0.04 0 0.85 0.04 0.02 0.71 0.057 −0.012 0.80 0.05 0   9 0.84 0.04 0 0.98 0.02 0 0.67 0.063 −0.015 0.81 0.05 0   10 0.86 0.04 −0.01 0.71 0.09 −0.03 0.74 0.069 −0.013 0.73 0.06 −0.01   11 0.75 0.05 −0.01 0.48 0.07 0.01 0.77 0.056 0.006 0.77 0.06 0   12 0.76 0.05 0 0.70 0.05 0.03 0.65 0.069 0.025 0.69 0.06 0.01   13 0.75 0.05 0 0.73 0.05 0.01 0.7 0.063 −0.004 0.74 0.06 0   14 0.87 0.04 0 0.60 0.05 0 0.72 0.055 −0.017 0.81 0.05 0   15 0.79 0.05 0 0.69 0.03 0 0.66 0.073 −0.026 0.72 0.06 −0.01   16 0.89 0.04 0 0.66 0.07 0.02 0.74 0.056 −0.011 0.81 0.05 0   17 0.82 0.05 −0.01 0.76 0.07 0.01 0.71 0.053 0.002 0.77 0.05 0   18 0.90 0.04 0 0.68 0.05 0.01 0.66 0.056 0.006 0.82 0.05 0   19 0.70 0.05 0 0.69 0.08 −0.02 0.67 0.066 0.014 0.67 0.06 0   20 0.81 0.04 0 0.81 0.03 −0.02 0.75 0.069 0.002 0.78 0.05 0   21 0.87 0.04 0 0.79 0.06 −0.03 0.74 0.054 0.025 0.80 0.05 0   22 0.76 0.06 0 0.55 0.04 0.01 0.73 0.055 −0.015 0.73 0.06 0   23 0.80 0.05 0.01 0.62 0.05 0 0.64 0.058 0 0.76 0.05 0.01   24 0.93 0.03 0 0.73 0.06 0.02 0.64 0.049 0.002 0.83 0.05 0   25 0.66 0.06 0.01 0.76 0.05 0 0.76 0.057 −0.017 0.70 0.06 0   26 0.73 0.06 0.02 0.74 0.07 0.01 0.70 0.052 −0.005 0.71 0.06 0.01   27 0.84 0.04 0 0.92 0.04 0.03 0.68 0.056 0.022 0.81 0.05 0.01   28 0.92 0.03 0 0.80 0.04 0.02 0.70 0.068 −0.005 0.82 0.05 0   29 0.95 0.03 0 0.88 0.03 0 0.67 0.064 −0.003 0.85 0.04 0   30 0.78 0.05 −0.01 0.78 0.07 0.04 0.69 0.053 −0.009 0.74 0.05 0   𝜇 ± 𝜎 0.81 ± 0.079 0.05 ± 0.010 0.00 ± 0.008 0.75 ± 0.110 0.05 ± 0.017 0.01 ± 0.018 0.70 ± 0.048 0.06 ± 0.008 −0.002 ± 0.016 0.76 ± 0.056 0.05 ± 0.006 0.00 ± 0.007
Table 5
Results of the input and architecture ablation analysis.
 Ablation Scenarios Training Validation Testing Overall Overall rating 
 R RMSE Bias R RMSE Bias R RMSE Bias R RMSE Bias  
 

In
pu
t fe

at
ur
es

VH 0.75 0.06 0.01 0.67 0.07 −0.01 0.48 0.064 −0.018 0.64 0.06 0 Satisfactory   VV 0.25 0.08 0 0.75 0.06 −0.03 0 0.073 −0.015 0.15 0.08 −0.01 Poor   VV, VH 0.83 0.05 0 0.73 0.04 −0.01 0.59 0.065 0 0.77 0.05 0 Very Good   VH-VV, VH/VV 0.77 0.05 0.01 0.78 0.04 −0.01 0.61 0.063 0.007 0.73 0.06 0.01 Good   VV, VH, VH-VV, VH/VV 0.75 0.06 0 0.79 0.05 −0.01 0.78 0.053 0.002 0.75 0.05 0 Very Good   VV, VH, VH-VV, VH/VV, angle 0.72 0.06 0.02 0.71 0.06 0.01 0.76 0.05 0.024 0.73 0.06 0.02 Good   VV, VH, VH-VV, VH/VV, angle, NDVI 0.78 0.05 0 0.77 0.07 0.02 0.63 0.065 0.003 0.73 0.06 0 Good   All features 0.83 0.05 0 0.89 0.03 0.02 0.81 0.053 0.023 0.82 0.05 0.01 Very Good  
 

Ar
ch
ite
ct
ur
e 9:1:1 0.65 0.07 0.03 0.79 0.03 0.03 0.7 0.059 0.048 0.67 0.06 0.04 Satisfactory   9:5:1 0.59 0.07 −0.02 0.75 0.04 0.02 0.66 0.064 −0.021 0.61 0.06 −0.01 Satisfactory   9:1:1:1 0.66 0.06 0 0.66 0.07 0 0.68 0.07 0.015 0.67 0.06 0.01 Satisfactory   9:5:5:1 0.81 0.05 0 0.82 0.05 0 0.71 0.064 −0.001 0.77 0.05 0 Very Good   9:1:1:1:1 0.46 0.07 −0.05 0.15 0.08 0.03 0.38 0.08 −0.034 0.44 0.07 −0.04 Poor   9:5:5:5:1 0.83 0.05 0 0.89 0.03 0.02 0.81 0.053 0.023 0.82 0.05 0.01 Very Good  
domain), emphasising its adaptability across diverse landscapes. This 
resilience demonstrate the robustness and reliability of our methodol-
ogy, offering invaluable insights for diverse applications ranging from 
agricultural management to environmental monitoring. Our study not 
only significantly improves soil moisture estimation but also demon-
strates the potential of transfer learning to overcome data scarcity chal-
lenges in environmental domains, enabling more efficient and accurate 
predictive modelling in diverse environmental contexts.
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