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A B S T R A C T

This study assesses the dynamics of waterlogging using time series optical satellite images from
1987 to 2021 on alluvial fan of the Kosi River in the Himalayan Foreland. We classified the
satellite images to extract waterlogging patches by hybridising Simple Non-Iterative Clustering
(SNIC) segmentation and Random Forest (RF) algorithms. This hybrid framework can classify
the waterlogged patches from satellite images with overall accuracy ranging between 75%–
90%. We observed that the waterlogging patches during the pre-monsoon period show a
significantly increasing trend (4 km2∕year) from 1987 to 2021. During the post-monsoon
period, this trend is not statistically significant to the 95% confidence level. We used these
classified waterlogged images to understand the dynamics of waterlogging. We observed a
high probability of waterlogging in areas adjacent to the Fan margin. Further, we assessed the
likelihood of waterlogging in the vicinity road-rail network. The concentration of waterlogged
patches is relatively high within a one-kilometer buffer of the road-rail network. This study is
a step towards understanding the impact of anthropogenic intervensions on the dynamics of
waterlogging and drainage congestion.

1. Introduction

Waterlogging is a condition when the root zone of a soil column is fully saturated and does not allow surface water to
infiltrate further into the ground. It is generally found in regions characterised by shallow groundwater tables, topographic
depressions, soil with low porosity and permeability, excessive irrigation, and drainage congestion due to natural or anthropogenic
interventions (Dinka and Ndambuki, 2014; Khalil et al., 2021; Arnous and Green, 2015; Hjerdt et al., 2004). If this situation persists
for a prolonged period in any region may lead to soil degradation, rendering it unsuitable for agriculture (Walne and Reddy, 2021).
Globally, waterlogging consists of nearly 5%–8% of the total area of land surface (Liu et al., 2023; Bassi et al., 2014; Gardner and
Finlayson, 2018; Tiner et al., 2015). About 31.8% area of waterlogging is distributed in Asia, 27.1% in North America, 15.8% in
South America, 12.5% in Europe, 9.9% in Africa, and 2.9% in Oceania (Davidson et al., 2018).

In India, about 8.5 million hectares of land are affected due to waterlogging (Chowdhury et al., 2011). The majority of them
are distributed on the alluvial plains of the Indus, Ganga, and Brahmaputra rivers. Waterlogging is a severe problem on the Kosi
Fan of North Bihar plain (Fig. 1). Rapid urbanisation, infrastructural development, construction of flood protection structures, and
excessive irrigation have further aggravated the problem. The Kosi River is highly mobile; it has migrated laterally more than
110 km in the last three centuries. In the process of channel migration, the river has deposited its sediments and built a large
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Fig. 1. Polygon in red is the boundary of the Kosi Fan. Lines in solid blue and yellow are the stream and canal network. Images (a–d) illustrate the waterlogged
patches found on the Kosi Fan (square boxes in white).

conical structure (area- 10, 351 km2; radius- 115–150 km), popularly known as the Kosi Fan (Gole and Chitale, 1966; Arogyaswamy,
1971; Wells and Dorr, 1987). To prevent channel migration, embankments were constructed in 1962 along both banks of the Kosi
River. Consequently, drainage networks from the fan surface radiating towards the Kosi River are now unable to join the river. This
has resulted in waterlogging at many places in the area adjacent to the embankments. Also, the lateral seepage of water from the
Kosi River has caused waterlogging in the adjacent regions. Jain and Sinha (2005) identified a large portion of waterlogging patches
in the lower region of the Kosi alluvial fan is groundwater-induced.

Apart from the embankments, a dense network of roads and rail, which run mostly in an E-W direction has severely affected
the natural drainage of the Kosi Fan. At several places, these road and rail networks act as barriers and disconnect drainages and
streams (Pandey et al., 2012; Sinha et al., 2013; Kumar et al., 2014; Singh et al., 2022). As a consequence, many locations on the
Kosi Fan are characterised by severe drainage congestion and waterlogging. A significant increase in these waterlogging patches has
been observed after the year 1995 (Pandey et al., 2012).

On the Kosi Fan, flooding and waterlogging problems get severe during the monsoon. The spatial distribution of the waterlogged
patches appears to be highly dynamic. One can track their inter-annual variations from the time series satellite images. The spectral
indices derived from the multi-spectral optical remote sensing images (i.e., Landsat, and Sentinel-2) are very useful in monitoring
waterlogging.

Pixel-based image classification algorithms, such as unsupervised and supervised are used to automatically classify the raw image
pixels to thematic classes (Prajapati et al., 2021; Chakravorty and Jha, 2022; Amer, 2021; Neeti et al., 2022). The conventional
application of classification algorithms over a fixed grid incurs several drawbacks, including high memory requirements, increased
time complexity, and reduced suitability for real-time applications. These limitations stem from the inherent rigidity of fixed-
grid approaches. They fail to adapt to the dynamic nature of real-world data. Therefore, they are not recommended for scenarios
demanding efficient and responsive classification tasks.

To address this issue, we propose a hybrid framework that incorporates Simple Non-Iterative Clustering (SNIC) as a preprocessing
step prior to applying the classification algorithm. SNIC generates superpixels of adaptive size, allowing the algorithm to dynamically
adjust their dimensions based on the image content. This capability results in more accurate representations of regions within the
image and also eliminates the constraints imposed by a fixed grid size. Furthermore, SNIC excels in maintaining better boundary
adherence compared to alternative superpixel algorithms. This enhanced boundary adherence stems from SNIC’s integration of both
spatial and colour information, yielding superpixels that more closely align with object boundaries in the image. Subsequent to the
2
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Table 1
Satellite and in-situ data used in this study.

In-situ

Type of the
data

Instrument Time period

Field visit
RTK Survey
and
Garmin-84

15–19 March,
2019 and
11–20
December,
2019

Satellite data

Type of the
data

Instru-
ment/satellite

Time period Images Spatial
resolution

Temporal
resolution

Optical

Landsat-5 1987–2011 284 30 m 16 days
Landsat-7 2000–2003 27 30 m 16 days
Landsat-8 2013–2016 28 30 m 16 days
Sentinel-2 2016–2021 259 10 m 10 days
High-resolution
Google images

2002–2021 – 0.15–15 m –

DEM SRTM 2007–2013 1 30 m Single

superpixel conversion, we apply the RF classifier on optical satellite images from 1987–2021 (Landsat and Sentinel-2) to accurately
extract the waterlogging patches on the Kosi Fan. We performed the trend analysis to quantify the seasonal dynamics of these
waterlogging patches, separately for the pre- and post-monsoon periods. Based on this, we compute the probability of a given pixel
on the image to be classified as waterlogging. Finally, we evaluate the spatial association of waterlogging patches in the proximity
of anthropogenic interventions such as road-rail networks. The findings of this study can be used to identify drainage congestion
and potential locations where waterlogging can initiate or become severe due to anthropogenic interventions on the Kosi Fan.

2. Materials and methods

2.1. Dataset

2.1.1. Satellite data
We used a combination of multi-temporal satellite (optical) images and a Digital Elevation Model (DEM) to study the dynamics

f waterlogging on the Kosi Fan. We have processed 598 individual images of Landsat and Sentinel-2 satellite missions from a period
etween 1987 to 2021 (Tables 1 & A.1). To perform the topographic analysis, we have used the Shuttle Radar Topography Mission
SRTM) DEM version 3 (spatial resolution 30 m). These datasets were imported into the Google Earth Engine (GEE) code editor
nvironment (https://code.earthengine.google.com/) for further processing and analysis.

This study uses specific bands from the optical images, including Blue (0.45–0.51 μm), Green (0.53–0.59 μm), Red (0.64–0.67
μm), Near Infrared (NIR) (0.77–0.90 μm), and Shortwave Infrared (SWIR) (1.55–1.75 & 2.09–2.35 μm). The spatial resolution of
Landsat images is 30 m and the revisit time is 16 days. In addition, we employed Sentinel-2 (A & B) multi-spectral images from
2016 to 2021. Sentinel-2 (A & B) together enables a temporal resolution of 5 days. The Blue, Green, Red, and NIR bands of Sentinel
2 have a spatial resolution of 10 m, and 20 m for the SWIR. We re-sampled all the Sentinel-2 bands at 30 m grid size using the
bi-linear interpolation to ensure consistent spatial representation across the dataset. We have manually extracted the road, rail,
embankments, and canal networks on the Kosi Fan from the Google Earth images (Table 1).

2.1.2. In-situ
We conducted field surveys in the pre- (5–19 March) and post-monsoon (11–20 December) of 2019 to record the location of

waterlogged patches and their spatial extent (Fig. 2). We recorded the position (latitude and longitude) of 119 waterlogged patches
distributed throughout the Kosi Fan by using a handheld Garmin-84 GPS. For some of the waterlogging patches, we have measured
their boundary using a real-time kinematic GPS (GeoMax Zenith35 Pro model) in differential mode. This enables us to obtain the
periphery of waterlogged patches. At each measurement location, we first established a reference station and set up a base receiver
in static mode. We then set up a rover receiver and configured it with the base receiver. We walk around the outer periphery of a
waterlogged patch with the rover and record the coordinate and elevation every five seconds. This procedure yields an uncertainty
of less than 10%.
3
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Fig. 2. Locations of waterlogging patches surveyed in the field. The placemark in blue are the locations of waterlogged patches surveyed in the field. Their
coordinates were recorded by using handheld and RTK GPS. The Google Earth images shown on the right panel show the waterlogging patches surveyed (dots)
in the field using a differential GPS in RTK mode (a–d). The periphery of the waterlogged patches is manually digitised from Google Earth images.

2.2. Image processing

We categorised the satellite images based on their acquisition dates into pre- (March-May), and post-monsoon (October–
December) periods. We have selected the blue, green, red, NIR, and SWIR bands to compute indices such as the Normalised Difference
Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Optimised Soil Adjusted Vegetation Index (OSAVI), Normalised
Difference Water Index (NDWI), and Modified Normalised Difference Water Index (MNDWI) (Fig. 3). The equations to compute
these indices are provided in Appendix A (Table A.2). The SAVI and OSAVI are effective in detecting waterlogging patches with low
vegetation coverage and exposed soil (Poulin et al., 2010; Taddeo et al., 2019). As compared to NDVI, the MNDWI can accurately
detect waterlogging patches covered with grass reeds. This is due to the fact that SWIR bands have more light absorbance capabilities
as compared to NIR band (Singh et al., 2015). We now take the median of different indices (NDVI, SAVI, OSAVI, MNDWI, and NDWI),
and image bands (green, blue, red, NIR, SWIR) of Landsat and Sentinel-2 satellites separately for the pre-and post-monsoon periods
from 1987–2021. Finally, we use these layers to automatically classify the waterlogged patches.

2.3. Extraction of waterlogging

We applied image segmentation and RF algorithms to extract waterlogging patches from the satellite images (Fig. 4). We used
a SNIC algorithm within the GEE environment. The SNIC algorithm generates object-based segments corresponding to different
features from the satellite image. It requires four input parameters: cluster size, compactness factor, connectivity, and neighbourhood
size. The size of a cluster determines the spacing of seed locations for superpixels, which are small clusters of connected pixels with
defined geometry. The compactness factor controls the shape of the clusters, with higher values leading to more compact clusters.
The connectivity parameter manages the contiguity and merging of adjacent clusters, while the neighbourhood size parameter
helps to prevent artifacts at the tile boundaries. We experimented with different cluster sizes and found a seed spacing value of 5
yields optimal results and accordingly selected parameter values of 1, 8, and 10 for compactness, connectivity, and neighbourhood
size factor, respectively (Shafizadeh-Moghadam et al., 2021; Tassi and Vizzari, 2020). We then overlay the segmented features on
stacked layers created from the individual median images. Within the boundary of each cluster, we take the mean pixel values of
4
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Fig. 3. Flow chart illustrates the methodology adopted in this study.

the individual bands of the stack image. Finally, we use them as training samples to classify waterlogging patches from satellite
images by using the RF algorithm.

We use 70% of the training samples with their corresponding class level to train the RF classifier. It randomly selects N subsets
of training samples and their corresponding classes to create independent decision trees for each subset. The best split of nodes is
determined by minimising the correlation between trees (Ao et al., 2019). Each decision tree then predicts the classification result.
Subsequently, the RF algorithm performs majority voting by combining the results of each decision tree to assign a final decision.
Executing RF on the GEE environment requires three input parameters to be specified; the number of trees, variables per split, and
seed. We set the values for decision trees, variables per split, and seed as 100, 3, and 0, respectively by trial and error method. We
now test the RF model by using the remaining 30% of the samples to compute the classification accuracy. Once the model is trained
and validated, we apply it to classify the satellite image.

The classification results in disconnected boundaries of the waterlogged patches and some pixels within it are classified as non-
waterlogged. To connect the disconnected boundaries of the waterlogging patches, we applied the connected component algorithm
(ee.Image.connectedComponents). Simultaneously, we applied morphological operations (erosion and dilation) on classified images.
They merge the pixels that were initially classified as non-waterlogged inside the waterlogged. Once the artifacts from the classified
images are rectified, we compute the area of individual patches of waterlogged and surface water bodies. Finally, we use time series
images to compute the probability of a given pixel on the Kosi Fan being classified as waterlogging (𝑃w) by using Eq. (1);

𝑃w =
Number of times waterlogging observed at the same pixel

, (1)
5
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Fig. 4. Classification scheme adopted to classify the satellite images by using the RF algorithm.

2.4. Trend analysis

We used a non-parametric Mann–Kendall test to assess the trend of waterlogging for the pre- and post-monsoon periods separately
from 1987–2021. It is useful for testing the hypothesis about the presence or absence of a trend within a time series (Mann, 1945;
Hofmann et al., 2023). We formulated the null hypothesis (H0) that the total area of the waterlogging patches on the Kosi Fan is
constant. Eq. (2) estimates the sign for each pair of observations in a time series (xj − xi);

𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖) =

⎧

⎪

⎨

⎪

⎩

+1, if (𝑥𝑗 − 𝑥𝑖) > 0
0, if (𝑥𝑗 − 𝑥𝑖) = 0
−1, if (𝑥𝑗 − 𝑥𝑖) < 0

, (2)

where xi and xj are observations are ranked from i = 1 to n−1 and j = i+1 to n, respectively.
If the value of 𝜏 (Eq. (3)) deviates significantly from 0 in either direction (positive or negative), it signifies an existing trend

in a times series. The concordant pairs are the observations of xi and xj (where i < j) that have the same direction (increasing
or decreasing). The discordant pairs have different directions (increasing and decreasing). The total number of pairs includes the
combination of concordant and discordant pairs.

𝜏 =
Number of concordant pairs − Number of discordant pairs

Total number of pairs . (3)

We estimated the S-statistics by using Eq. (4). If the sum of its signs is positive, this indicates an increasing trend in a time series
and vice-versa. If the sum of signs approaches zero, indicates no trend.

𝑆 =
𝑛−1
∑

𝑖=1

𝑛
∑

𝑗=𝑖+1
𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖). (4)

Subsequently, the variance of S-statistics is estimated using the following expression in Eq. (5);

𝑣𝑎𝑟(𝑆) =
𝑛(𝑛 − 1)(2𝑛 + 5)

18
, (5)

where n is the number of samples present in a time series data.
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Table 2
Mann–Kendall test and Sen’s slope statistics.

Mann–Kendall test

Parameters Post-monsoon Pre-monsoon

n 25 31
Z-values 0.93 2.03
p-value 0.35 0.041
S 41 121
VarS 1832.33 3461.66
𝜏 0.13 0.26

Sen’s slope

Confidence level range within 95% −8.13 0.25
18.24 7.68

𝛽 5.61 4.21

We have performed the Z − test to estimate the probability that the trend occurred by chance, considering the sample size and
the distribution of time series data (Eq. (6)) . If Z > 0, it indicates an increasing trend, and vice versa.

𝑍 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑆−1
√

𝑣𝑎𝑟(𝑆)
, if 𝑆 > 0

0, if 𝑆 = 0
𝑆+1

√

𝑣𝑎𝑟(𝑆)
, if 𝑆 < 0

. (6)

We applied the Sen’s slope estimate (𝛽) to determine the magnitude of a trend in time series data according to Eq. (7);

𝛽 = 𝑀𝑒𝑑𝑖𝑎𝑛

(

𝑥𝑗 − 𝑥𝑖
𝑗 − 𝑖

)

; 𝑗 > 𝑖, (7)

where 𝛽 is Sen’s slope estimate.

2.5. Impact of structural interventions

We assess the impact of anthropogenic interventions (roads, rail, embankments, canal network) on waterlogging on the Kosi Fan.
To do this we compute the conditional probability (Eq. (8)) of waterlogging within a 1 km buffer of the road and rail network;

𝑃 (𝐴 ∣ 𝐵) =
𝑃 (𝐴 ∩ 𝐵)
𝑃 (𝐵)

=
𝑁(𝐴∩𝐵)

𝑁
𝑁(𝐵)
𝑁

, (8)

where A, B, and N represent waterlogging occurrence, the road-rail network, and the number of observations, respectively.
We further examined the dynamics of waterlogged patches at the nodes where road and rail networks intersect rivers or drainage

networks. Such conditions can create barriers that impede the downstream fluxes, leading to waterlogging. We identified a total of
243 nodes, which correspond to the intersections of rivers and road-rail networks across the Kosi Fan (Fig. 6).

3. Results

3.1. Accuracy assessment

To assess the classification accuracy of satellite images, we employed ground truth data consisting of 119 waterlogged patches,
gathered both in the field and through visual interpretation of high-resolution Google Earth images. Transition matrices were
computed for the pre- and post-monsoon periods for each year from 1987 to 2021. The overall accuracy of waterlogged patches
classified from Landsat and Sentinel-2 images ranges between 75% and 90%. The transition matrix reports the classification accuracy
(Fig. 5). Other accuracy matrices such as recall, precision, and F1-score are provided in Appendix B (Table B.2).

3.2. Dynamics of waterlogging

To comprehensively investigate the dynamics of waterlogging patches, we conducted a thorough analysis of their spatial and
temporal variations spanning from 1987 to 2021, with a specific focus on both the pre-monsoon and post-monsoon periods (Fig. 6-
Fig. 7). The results indicate that the extent of waterlogging is consistently high during the post-monsoon period. Seasonal fluctuations
in waterlogging are discernible on the Kosi Fan in both the pre- and post-monsoon periods. Notably, a spike in waterlogging patches
was observed during the post-monsoon season of 2008. This surge can be attributed to the catastrophic Kosi flood that occurred in
7
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Fig. 5. The transition matrix illustrates the overall accuracy of the classification results obtained for the pre-monsoon (2016 and 2021) and post-monsoon (1987
and 2019) periods.

The statistical tests conducted on the time series data for pre- and post-monsoon waterlogging yield Z-values of 2.03 and 0.93,
with corresponding p-values of 0.04 and 0.35, respectively (Table 2). These results highlight a statistically significant increasing
trend in waterlogging patches during the pre-monsoon period (Fig. 8). However, to the 95% confidence level, this trend is not
significant for the post-monsoon period. Table 2 reports the Sen’s slope (𝛽) value. The rate of increase in waterlogging during the
pre-monsoon period is approximately 4 km2∕yr.

3.3. Anthropogenic impacts on waterlogging

We observed a higher probability of waterlogging occurrence at the western and eastern margins of the Kosi Fan, particularly
in the close proximity to streams and areas where structural interventions, such as road-rail networks, embankments, and canals,
impede natural drainage (Fig. 9). To assess drainage congestion, we plot the number of waterlogging patches in relation to their
distance from the road-rail network (Fig. 10). Notably, the majority of waterlogging patches are concentrated within a one-kilometer
radius of the road-rail network, their frequency gradually decreasing as we move farther away. We examined the distribution of
waterlogging patches based on their sizes (Fig. 10). We found that approximately 90% of these patches have an area less than
0.05 km2, while the remaining 10% vary in size between 0.05–1 km2.

Now we compute the conditional probability of waterlogging occurrence within a one-kilometer buffer created around the road-
rail network (Fig. 11). We observed that the waterlogging patches are frequent in regions where the road-rail network intersects with
the drainage network. We systematically identified intersections between the road-rail and river networks, represented as nodes,
and scrutinised waterlogging patches in their vicinity. These intersection points were categorised into three distinct groups: fully
connected, disconnected, and partially connected nodes (Fig. 12). To provide a dynamic perspective, we generated a time series
plot depicting the number of nodes experiencing waterlogging conditions (Fig. 13).

The Kosi Fan has witnessed a rapid surge in road-rail network development work after the year 2012 (Kumar et al., 2014;
Goswami, 2019; Nhai, 2022; Morth, 2022). These developmental activities appear to have aggravated waterlogging in the study
area.

4. Discussion

The hybrid framework for image classification we proposed can be used to monitor the seasonal variability of waterlogging
patches from optical satellite images. The overall classification accuracy of waterlogged patches extracted from Landsat and Sentinel-
2 images varies between 75% and 90%. The total area of waterlogging on the Kosi Fan is relatively high in the post-monsoon period.
8
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Fig. 6. Classification of waterlogging pixels from the satellite images of the post-monsoon period of 2019. The images on the right panel show the zoomed area
waterlogging patches.

Fig. 7. Variation in the area of waterlogging patches and openwater extracted from satellite area from 1987 to 2021 for the pre and post-monsoon.
9
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Fig. 8. Trend of the waterlogging area from 1987 to 2021 during (a) pre-monsoon and (b) post-monsoon periods, respectively. Circles in black are the total
area of waterlogging on the Kosi Fan in different years in pre- and post-monsoon. The solid line is the linear fitted to the data.

This is because of the fact that a large portion of the Kosi Fan gets inundated during the monsoon (June-September) period. The
flood water starts to recede after the monsoon. The high residence time of flood water stored in the topographic depression, low-
lying areas, ditches, and near drainage congestion due to structural barriers (i.e.; road, rail, embankments) results in waterlogging
for a longer duration. These temporary storages dry due to intense solar radiation received during the pre-monsoon. This results
in seasonal dynamics in waterlogging on the Kosi Fan. Time series analysis of waterlogged patches from 1987 to 2021 reveals
a significant increasing trend for the pre-monsoon period. However, this trend is very mild for the post-monsoon period. On the
Kosi Fan, we observe waterlogging patches show a strong spatial association in the proximity of road and rail networks. These
structural interventions disconnect the flux movement in the downward direction, leading to localised accumulation of water in the
rainy season. Prevailing such a condition for a longer duration may cause permanent waterlogging in the region. Fig. 14 shows the
waterlogging condition in pre-monsoon on the Kosi Fan in the past two decades. We observed areal expansion of existing and the
formation of new patches of waterlogging in the study area from 1987–2010 to 2011–2021. This observation correlates with the
infrastructural development activities on the Kosi Fan (Nhai, 2022; Morth, 2022). The waterlogging conditions are likely to intensify
in the future under the projected infrastructural development in the study area. This condition can have adverse impacts in terms
of soil degradation, loss of agricultural productivity, and increasing risk of flooding.

4.1. Topographic and anthropogenic impact on waterlogging

The topography plays a pivotal role in shaping the waterlogging dynamics of the Kosi Fan. Characterised by a distinctive
convex-up transverse profile and a concave upward radial profile, the Kosi Fan demonstrates unique geomorphic features (Fig. 15).
The highest concentration of waterlogged patches occurs prominently along the fan margin. Notably, divergent drainage networks
become apparent, radiating in the South-West and South-East directions from the fan axis. Our observations are in accordance with
the waterlogging in the low-lying areas, particularly in the proximal and medial regions of the Kosi Fan, with comparatively lower
occurrences nearer the fan axis (Fig. 9).

Furthermore, to assess the impact of structural interventions on waterlogging, we conducted an analysis of road and rail network
density (expressed in km∕km2) within a 10×10 km grid (Fig. 16). Grids encompassing major urban centres such as Saharsa, Purnea,
and Madhepura have the highest road-rail density (0.7 to 0.8). Regions adjacent to these cities have a network density ranging
between 0.3 to 0.7. We have computed the total area of waterlogging patches in the proximal (4 km2), medial (80 km2), and distal
(304 km2) parts of the Kosi Fan. Further, we have computed the area of waterlogging in different lobes of the Kosi Fan (Fig. 16).

2 2 2
10
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Fig. 9. Probability of waterlogging occurrence. The stack of classified image collections from 1987 to 2021 is shown in the background. The probability of
waterlogging occurrence is shown in a single image on the right front side of the figure. In comparison, the red, yellow, and blue waterlogging patch areas
show a high, medium, and low probability of waterlogging occurrence, respectively.

Fig. 10. Statistics of the waterlogging patches on the Kosi Fan. (a) Histogram of the waterlogging patch minimum distance from the road-rail network (bin size
200 m). (b) Histogram of the waterlogged patches area in the Kosi Fan (bin size 0.025 km2 or 25000 m2).

4.2. Limitations and future directions

This study provides a robust approach of assessing the dynamics of waterlogging under the influence of drainage congestion
due to structural interventions on the Kosi Fan. The hybrid image classification algorithm is able to automatically identify the
waterlogged pixels from optical satellite images with an overall accuracy greater than 75%. Time series analysis of waterlogged
patches extracted from satellite images (1987–2021), separately for the pre- and post-monsoon reveals increasing trends. However,
to the 95% confidence level, this trend is not significant in the post-monsoon period. Spatial analysis of the waterlogging on the
Kosi Fan suggests a significant control of topography and drainage congestion due to the construction of road and rail networks.
11
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Fig. 11. Conditional probability of occurrence of waterlogging within the 1 km proximity of (a) road-rail network and (b) canal network on the Kosi Fan.

Despite its merit, this study has certain limitations. For example, the limitation of optical satellite sensors to acquire images in cloudy
weather and heavy rainfall. This limits our ability to extract waterlogged patches using optical satellite images during the monsoon
period. These limitations can be largely addressed by employing a combination of techniques, such as the fusion of multi-sensor
data, the application of sophisticated machine learning algorithms for cloud detection and removal, and the exploration of deep
learning models for image inpainting. Further, this study does not make any distinction between the natural and anthropogenic
waterlogged patches. A finer level of image classification to automatically detect such waterlogged patches from satellite images
would help to assess and compare their trends separately.

This study provides valuable insights for devising strategies to alleviate waterlogging challenges adjacent to road and rail
networks. This becomes especially critical for addressing drainage congestion. A recent upswing in waterlogging strongly correlates
with drainage congestion. This poses a considerable risk of inducing severe flooding on the Kosi Fan. This holistic approach will
contribute to a more critical understanding and effective management of the complex interplay between waterlogging and the
broader flood dynamics in the Kosi Fan.

5. Conclusions

We have performed a time series analysis using optical satellite images to assess the dynamics of waterlogging on the Kosi Fan
during the pre- and post-monsoon periods. We have used the inherent topography and drainage congestion due to the road and rail
network to explain the potential cause for the development of waterlogging on the Kosi Fan. Based on the finding of this study,
following conclusions can be drawn.

• The hybrid algorithm based on SNIC-RF can classify the waterlogging pixels from Landsat and Sentinel-2 images with an
overall accuracy between 75%–90%. It can detect the waterlogged patches covered with grass reeds.

• Time series analysis (1987–2021) of the Landsat and Sentinel-2 images reveals an increasing trend in the area of waterlogged
patches. This trend is about 4 km2∕year for the pre-monsoon period. To the 95% confidence level, it is not significant for the
waterlogging patches observed during the post-monsoon period.

• The topographic depression at the fan margin and divergent drainage networks in the SE and SW from the Fan axis provide
an accommodation of rainwater leading to waterlogging.

• The waterlogging patches are widely found on the Kosi Fan in the proximity of the road and rail networks. These networks
act as barriers that obstruct the movement of fluxes further downstream during the rainy season, leading to inundation and
eventually waterlogging in their proximity. The waterlogging at the intersection of drainage and road network on the Kosi
Fan has significantly increased (about 15–20%) both in the pre- and post-monsoon after the year 2014.

• About 118 km2 and 181 km2 area of lobes−1 and 3 of the Kosi Fan is waterlogged. The lobe-2 is the least affected by
waterlogging, only 88 km2 of its area is waterlogged.
12
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Fig. 12. Schemetic to illustrate the channel dis-connectivity due to structural interventions (road, rail, canal, embankments, etc.). The field photographs and
corresponding locations on the satellite images are shown for visualisation.

Fig. 13. Waterlogged near the nodes (%) within the proximity of road-rail and river network intersection on the Kosi Fan from 1987–2021.
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Fig. 14. Decadal variation in the spatial extent of pre-monsoon waterlogging areas during 1987–2010 and 2011–2021 at four different locations (from left
to right). The top four images depict the 1987–2010 period, while the bottom four images represent 2011–2021. Waterlogged areas for the 1987–2010 and
2011–2021 periods are delineated with yellow and red polygons, respectively.

Fig. 15. (a) Digital elevation model of the Kosi Fan. (b) Lateral elevation profile. (c) Longitudinal elevation profile of the Kosi Fan.
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Fig. 16. The road-rail network density and waterlogging area within each grid on the Kosi Fan.

Funding

This research was funded to Dr. Kumar Gaurav by the Science and Engineering Research Board (SERB), Govt. of India through
grant ECR/2017/001154.

Code availability

The code developed in this study will be made available on request.

CRediT authorship contribution statement

M. Niranjannaik: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing – original draft,
Writing – review & editing, Visualization. Kumar Gaurav: Investigation, Writing – original draft, Writing – review & editing,
Visualization, Supervision. Abhilash Singh: Methodology, Writing – original draft, Writing – review & editing, Visualization. Amrit
Kumar Singh: Software, Methodology, Data curation, Visualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.
15



Remote Sensing Applications: Society and Environment 33 (2024) 101113M. Niranjannaik et al.

f

A

A

Acknowledgements

We acknowledge IISER Bhopal for providing institutional support. We thank the Science and Engineering Research Board (SERB)
or funding this research.

ppendix A. Datasets and features

The appendix consists of Tables A.1 and A.2.

ppendix B. Accuracy assessment

See Table B.1
TN = True positive
TP = True positive
FN = False negative
FP = False positive

TN = True positive
TP = True positive
FN = False negative
FP = False positive

Overall accuracy = TN + TP
TN + FP + FN + TP , (B.1)

Precision = TP
TP + FP , (B.2)

Recall = TP
TP + FN , (B.3)

F1 Score = 2 × Precision × Recall
Precision + Recall . (B.4)

Table A.1
Details of the number of optical satellite images used in this study.

Satellite Period Number of images Total images

Pre-monsoon Post-monsoon

Landsat-5 1987–2001,
2004–2011

176 108 284

Landsat-7 2000–2003 14 13 27

Landsat-8 2013–2015 18 10 28

Sentinel-2 2016–2021 105 154 259

Total Optical
images

1987–2021 313 285 598

Table A.2
Indices used in this study.

Index Definition

Normalised Difference Vegetation Index (NDVI) NIR - Red
NIR + Red

Soil Adjusted Vegetation Index (SAVI) NIR - Red
NIR + Red + 0.5 × (1 + 0.5)

Optimised Soil Adjusted Vegetation Index (OSAVI) NIR - Red
NIR + Red + 0.16

Normalised Difference Water Index (NDWI) Green - NIR
Green + NIR

Modified Normalised Difference Water Index Green - SWIR
Green + SWIR
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Table B.1
Example of confusion matrix of the actual and
predicted class values.

Actual values
Positive Negative

Positive TP FPPredicted values Negative FN TN

Table B.2
Comparison of waterlogging classification accuracies statistics such as overall accuracy, kappa statistics, precision, recall, and F1-score.

2016 Pre-monsoon Precision Recall F1-score

Water 0.9 0.98 0.95 Overall accuracy = 87.78%

waterlogging 0.73 0.98 0.85 Kappa statistics = 0.82

Other class 0.97 0.73 0.85

2021 Pre-monsoon

Water 0.87 0.93 0.90 Overall accuracy = 86.667%

waterlogging 0.81 0.81 0.81 Kappa statistics = 0.8

Other class 0.90 0.84 0.87

1987 Post-monsoon

Water 0.73 0.97 0.85 Overall accuracy = 83.33%

waterlogging 0.80 0.89 0.84 Kappa statistics = 0.75

Other class 0.98 0.73 0.85

2019 Post-monsoon

Water 0.77 0.98 0.87 Overall accuracy = 85.56%

waterlogging 0.80 0.97 0.89 Kappa statistics = 0.78

Other class 0.98 0.70 0.82
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