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Abstract: The dramatic increase in the computational facilities integrated with the explainable
machine learning algorithms allows us to do fast intrusion detection and prevention at border areas
using Wireless Sensor Networks (WSNs). This study proposed a novel approach to accurately predict
the number of barriers required for fast intrusion detection and prevention. To do so, we extracted
four features through Monte Carlo simulation: area of the Region of Interest (RoI), sensing range
of the sensors, transmission range of the sensor, and the number of sensors. We evaluated feature
importance and feature sensitivity to measure the relevancy and riskiness of the selected features. We
applied log transformation and feature scaling on the feature set and trained the tuned Support Vector
Regression (SVR) model (i.e., LT-FS-SVR model). We found that the model accurately predicts the
number of barriers with a correlation coefficient (R) = 0.98, Root Mean Square Error (RMSE) = 6.47,
and bias = 12.35. For a fair evaluation, we compared the performance of the proposed approach
with the benchmark algorithms, namely, Gaussian Process Regression (GPR), Generalised Regression
Neural Network (GRNN), Artificial Neural Network (ANN), and Random Forest (RF). We found
that the proposed model outperforms all the benchmark algorithms.

Keywords: WSNs; intrusion detection; machine learning; feature learning; support vector regression

1. Introduction

These days, security is one of the primary concerns for every nation caused by highly
unpredictable and noxious events taking place across the globe [1–3]. Every nation wants
to secure and protect its borders from any kind of intrusion and attack by enemy forces. In
addition, unauthorised and illegal entry is another vital matter that requires immediate
attention from the concerned authorities [4]. In order to protect their international borders
from enemies and unfriendly forces, several nations have their regular armies. These army
soldiers patrol along the border stretches, but patrolling methods are conventional, periodic,
and limited. Since a country may have international boundaries that are thousands of
miles long, it is impossible to deploy soldiers at every single location. Consequently, there
remains a large area along the international borders that is unguarded. Enemies may take
advantage of these unguarded locations and enter the territories. They can likely steal some
classified documents crucial to the security of a nation, decimate defence personnel, or
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demolish crucial infrastructures. The surveillance and monitoring along the international
borders and checkpoints can be achieved with the help of WSNs.

WSNs is a widely accepted and renowned technology because it is cheap, readily
available, and can be installed on the fly in almost no time at any place [5,6]. In addition,
WSNs consist of small and homogeneous sensors that work in a de-centralised fashion
requiring no pre-installed foundation and communicating over wireless channels [7]. There-
fore, WSNs are employed for many civilian and military applications such as precision
agriculture, health monitoring, structural health monitoring, industrial monitoring, disaster
management, rescue operations, wild animal monitoring, landslide monitoring, fire detec-
tion, monitoring and surveillance in border areas, and many more [8–11]. Furthermore,
intrusion detection in border areas and unauthorised access detection in restricted areas
and infrastructures is a pivotal application of WSNs. For example, a WSN can be deployed
to form a sensor barrier for any possible intrusion path as shown in Figure 1. The studies
conducted so far on intrusion detection issues can be divided into two categories; first, it is
described as a monitoring or surveillance system to detect an invader or an unauthorised
entry in the RoI. Secondly, it is assumed to be a component of a WSN system specifically
designed and implemented to diagnose compromised and/or vulnerable sensors for avoid-
ing false alarms and ensuring correct network behaviour [12]. In this work, we concentrate
on the first category.

Figure 1. Illustration of 3-barrier coverage for each intrusion path.

The work presented in [13] proposed a fusion algorithm with three levels of hierarchy
to spot a passive mobile intruder. They have employed two crucial modalities, namely the
sensing probability model and acoustic signal model, to ascertain the presence of an invader.
In addition, the authors have also analysed the influence of the number of sensors, intruder
speed on the probability of detection, detection accuracy, and false alarm rate and found that
the proposed algorithm outperforms the other fusion algorithms. Another work presented
in [14] proposed optimal trajectories for mobile sensors employed for intrusion detection
in a given RoI. The proposed trajectories for mobile sensors will maximise the coverage
area and reduce energy consumption, which would increase the lifetime of the sensor
network, thus providing improved intrusion detection performance. A distributed border
surveillance system is proposed in [15], where the performance of the system is estimated
in terms of the number of barriers obtained for a possible intrusion path in shadowed
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and non-shadowed environmental conditions. The authors found that the number of
barriers obtained for shadowed environmental conditions is greater compared with the non-
shadowed environmental conditions. Similarly, the work in [16] proposed a smart border
surveillance system that uses ultrasonic, passive infra-red, and camera sensors to detect the
presence of an intruder. The proposed system is capable of distinguishing between animal
and human beings. The system sends an alert message and video streams to the control
system as soon as it identifies an intruder. In Ref. [17], the authors have proposed a border
surveillance system architecture that renders high energy efficiency and load balancing
capabilities, thus, increasing the network lifetime. Furthermore, the proposed methodology
needs less maintenance, involves low-cost installation, and delivers enhanced reliability.
The authors claim that the proposed system outperforms other available intrusion detection
systems and has an enhanced network lifetime. Another work provided in [18] presented
an analytical model to detect a mobile intruder using mobile sensor networks. They have
obtained an analytical formula to calculate the k-barrier coverage probability for an invader
trying to cross a rectangular-belt region following a given path. They have also investigated
the effect of network parameters such as sensor-to-intruder velocity ratio, sensing range,
sensor count, and intrusion path angle on the performance metric. The proposed model is
very effective in detecting an intrusion and tracking the enemy movements. Most recently,
the authors in [19] proposed a remote surveillance system using robots with CCTV cameras.
The authors claim that the proposed work will be useful for border surveillance and internal
monitoring.

It is pivotal to mention that the above-discussed works [13–19] contribute significantly
in the research domain. However, their models are validated through Monte Carlo sim-
ulation, which requires very high computation cost and time. For instance, it requires
approximately 15 hours to achieve a single outcome through simulation runs at a given
value of parameters. In addition, the simulation time increases exponentially with the
increase in the number of sensors, sensing range and other network parameters. This
is because of the fact that WSNs produce a large volume of data that requires plenty of
time for its processing and analysis. Applications like infiltration in border regions are
time-sensitive because a delay in seconds may cause catastrophes. Thus, it is vital to detect
any kind of intrusion along the borders and around the prohibited regions as quickly
as possible.

The problem at hand can be resolved by employing machine learning approaches
that are exceptionally competent for computational time [20,21]. For instance, the work
presented in [22] provided a mathematical framework to evaluate the k-barrier coverage
probability for a given intrusion path using mobile WSNs. The authors have proposed three
machine learning models based on the GPR algorithm to predict the k-barrier coverage
probability to overcome the computational and time complexity problem. In doing so, they
have considered sensing range, the number of sensors, sensor to intruder velocity ratio,
mobile to static sensor ratio, required value of k, and intrusion path angle as potential fea-
tures. The proposed machine learning model can predict the k-barrier coverage probability
with higher accuracy than the other benchmark algorithms.

In this study, we proposed an efficacious machine learning-based approach to accu-
rately predict the number of barriers for fast intrusion detection and prevention using
relevant features. We extracted relevant features (i.e., the area of the RoI, sensing and
transmission range of the sensor, and the total number of sensors) synthetically through
Monte Carlo simulations. Subsequently, we applied feature transformation and scaling
operations and trained a SVR model. We access the performance of the trained model by
using R, RMSE, bias, and computational time complexity as the performance metrics. The
main contributions of this paper are as follows:

• We introduced a synthetic data generation framework for a cost-effective solution.
• We estimated the relative importance score of each feature by using the regression tree

ensemble approach.
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• We performed the sensitivity analysis of the features using Partial Dependency Plot
(PDP) analysis.

• We proposed a novel algorithm based on log-transformed feature learning and feature-
scaling to accurately predict the number of barriers for fast intrusion detection and
prevention. We also performed a sensitivity analysis of the proposed algorithm.

2. Material and Methods
2.1. Preparation of the Datasets

The performance of any machine learning model depends on the quality of datasets
on which it is trained [23]. These datasets can either be field derived (obtained by direct
measurements) or generated synthetically (obtained through simple rules, statistical mod-
elling, and simulations) [24]. The use of synthetic data is increasing exponentially in the
domain of healthcare [25,26], WSNs [22,27], and data privacy [28].

In this study, we extracted the datasets synthetically through simulations. To do
so, we consider a finite number of sensors (N), distributed uniformly and randomly in a
rectangular RoI. Each sensor is assumed to be homogeneous, i.e., sensing, transmission,
and computational capabilities are identical for each sensor. The dimensions of the network
deployment RoI are varied from 100 × 50 m2 to 250 × 200 m2. The entire dataset used for
training and testing purposes is obtained through simulations using network simulator
NS-2.35. The complete procedure for simulation outcomes is explained below.

Any two arbitrary sensors in the deployed WSN can communicate with each other,
if they satisfy the condition, Rtx ≥ 2Rs, where, Rtx and Rs indicates the transmission
and sensing range of sensors respectively. Here, we have considered the most widely
employed sensing range model known as the Binary Sensing Model (BSM) to estimate the
performance of WSNs. According to BSM [29], a random sensor can detect a target with
probability equal to one, if the target falls within the sensing range Rs of the sensor denoted
by Si. Otherwise, the target detection probability will be equal to zero. Mathematically, it
can be represented by Equation (1).

Pdet =

{
1, i f d(Si, P) ≤ Rs

0, otherwise
(1)

where d(Si, P) represents the Euclidean distance between the sensor Si and target point P.
To identify the existence of intruders, a barrier is formed by connecting a sensor cluster
over the entire RoI. To detect an intruder successfully, there should be at least one barrier
for each possible intrusion path to ensure barrier coverage. The total number of sensors
required to achieve the desired k-barrier coverage can be computed by k =dL/2Rse [1] and
the maximum Barrier Paths (BPmax) that can be constructed for a given intrusion path is
computed as: BPmax = bN/kc, where L indicates the length of the rectangular RoI. The
k-coverage ensures that each point in the target RoI is monitored by k distinct sensors,
where k is a positive integer having value greater than one. Table 1 shows different network
parameters and their values used to get the simulation results.
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Table 1. Simulation parameters.

Parameters Values

Simulator NS-2.35

Network region Rectangular RoI

Network area (m2) 100 × 50 to 250 × 200

Number of sensors (N) 100 to 400

Sensing range (Rs) 15 to 40 m

Transmission range (Rtx) 30 to 80 m

Sensor’s deployment type Uniform distribution

Sensing model Binary sensing model

2.2. Calculation of Feature Importance and Sensitivity

To calculate each feature’s relative importance score, we created a regression ensemble
through boosting ensemble learning. We leverage LSBoost (Least Square gradient Boosting)
algorithm to boost hundred regression trees, each having unity learning rate [22,30]. This
algorithm assumes each decision tree as a weak learner and processes them individually
by identifying their weak points. Afterward, the algorithm process the next weak learner
by concentrating on the weak aspect of the previous learner. In this way, the algorithm
iteratively formed an ensemble of weak learners. Once the ensemble is generated, we
calculated the feature importance by summing the total change in the normalised node risk.

Further, we performed the Partial Dependency Plot (PDP) analysis to assess the
impact of each individual feature on the predictand. It computes the partial dependency
of the considered feature set on the predictand by marginalising the impact of remaining
features [27,30]. We considered a set of two features and computed their partial dependency
on the predictand. For a set of four features, we have a total of six pairs of features. We
plotted the 2D and 3D variation profiles.

2.3. SVR Model Set-Up

In this section, we have discussed the modelling of SVR [31,32] for the prediction of the
number of barriers (Figure 2). It is an effective algorithm to address prediction problems,
solve sample issues, and provide significant generalisation performance [30,33]. Using a
nonlinear mapping ϕ (.) : <n → <nh , the training sets (xi, yi), where i = 1 to n, are mapped
into a high dimensional feature space, <nh . Then, a linear function, f, is used to express the
nonlinear association among features and the response variable. The SVR function [34] is a
linear function which is represented as:

f (x) = wT ϕ(x) + B (2)

where f(x) indicates the forecasting values, w ∈ <nh indicates the weighting matrix, and
B ∈ < indicates the bias term. The SVR approach intends to reduce the empirical risk as:

Rem( f ) =
1
N

N

∑
i=1

Θε(yi, wT ϕ(xi) + B) (3)

where Θε(yi, wT ϕ(xi) + B) indicates the ε-insensitive loss function that determines the
optimal hyper plane on a high-dimensional feature space to maximise the distance between
two subsets of input dataset. It is determined by:

Θε(yi, wT ϕ(xi) + B) =

{
wT ϕ(xi) + B− yi − ε i f wT ϕ(xi) + B− yi ≥ ε

0, otherwise
(4)
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Hence, SVR is concerned with identifying the optimal hyper plane and decreasing the
residual between the training datasets and the ε-insensitive loss function. Moreover, SVR
reduces the total errors by:

min
w,B,ξ∗ ,ξ

Rε(w, ξ∗, ξ) =
1
2

wTw + C
N

∑
i=1

(ξ∗i + ξi) (5)

with the following constraints

yi − wT ϕ(xi)− B ≤ ε + ξ∗i , i = 1, 2, ..., N

−yi + wT ϕ(xi) + B ≤ ε + ξ i, i = 1, 2, ..., N

ξ∗i ≥ 0, i = 1, 2, ..., N

ξi ≥ 0, i = 1, 2, ..., N

Equation (4) normalises weight sizes, ensures regression function flatness, penalises
f(x) and y training residuals by the ε-insensitive loss function, and C represents the penalty
parameter. Training residuals above ε are represented as ξ∗i and below −ε are represented
as ξi. However, in the dual space, SVR function is represented as:

f (x) =
N

∑
i=1

(β∗i − βi)K(xi, xj) + B (6)

where K(xi,xj) represents the kernel function. It is the inner product of xi and xj vectors in the
feature space ϕ(xi) and ϕ(xj), respectively. We have used polynomial kernel (Equation (7))
as it belongs to the group of the non-stationary kernel that performs effectively over
standarised and transformed features [35].

K(xi, xj) = γ((xi · xj) + 1)ω (7)

where γ and ω are the kernel function’s structural parameter and polynomial degree,
respectively. The prediction accuracy of an SVR model is governed by the good tuning
of hyperparameters (C and ε). If the residual between the observed and predicted value
is greater than the hyperparameter ε then the other hyperparameter C, penalises the
model. Hence, a high value of C results in under-fitting, and a lower value leads to high
computational complexity [27].

In this study, we applied the universal grid optimisation algorithm [36] to optimise
the hyperparameters. We selected the most frequently used Mean Square Error (MSE)
function [37] as the objective function given by:

1
n

n

∑
i=1

( fi − f̂i)
2 (8)

where n is the sampling size, fi is the observed and f̂i is the predicted values. We iteratively
optimised C for all possible ε by considering the MSE function as the objective function. We
found the optimal value of C = 0.1 and ε = 0.01. Afterward, we applied log transformation
(LT) [38] and mean z-score scaling (Equation (9)) on the input features. Where x f is the
input feature set, x f is the mean of the feature set, and σ is the standard deviation of the
feature set.

xs f =
x f − x f

σ
(9)
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ξi ξi*

ξi
*

ξi

Figure 2. Illustration of the support vector regression with all input features and the corresponding
response variable.

Once we applied feature pre-processing, we trained and evaluated the SVR model
in an 80:20 ratio. The datasets are divided randomly using Mersenne Twister random
generator. We illustrated the complete methodology in Figure 3 and also enumerated the
complete process into the following steps;

1. We synthetically generated the input features (i.e., area of the RoI, sensing range of
the sensors, transmission range of the sensor, and the number of sensors) through
Monte Carlo simulations.

2. We trained a regression tree ensemble to estimate each feature’s relative feature
importance score.

3. We leverage PDP analysis to perform the sensitivity analysis of each feature.
4. We applied feature scaling on the selected features post log transformation.
5. We used the Mersenne Twister generator with a random seed to randomly divide the

datasets for training and testing the model in a ratio of 80:20.
6. We used 80% of the datasets to set up the machine learning model.
7. We used the remaining 20% of the datasets to test the performance of the trained model.
8. We performed the sensitivity analysis of the trained model.
9. We performed the error analysis using error histogram analysis to understand the

distribution of the errors.
10. We compared the performance of the trained model with the benchmark algorithms

(i.e., ANN, GRNN, GPR, and Random Forest).
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Figure 3. Flowchart of the proposed methodology.

3. Results

In this section, firstly, we discuss the results of feature importance and sensitivity
analysis. Afterward, we discuss the performance of the proposed model.

3.1. Feature Importance and Sensitivity

We evaluated the prominence of each feature through the regression tree ensemble
approach. The bars in Figure 4 show the relative feature importance score of each feature.
The feature importance score of all four features ranges between 60 to 140. We found that
the area of the RoI has the least feature importance among all, indicating that area of the
rectangular region is the least relevant feature in predicting the number of barriers for fast
intrusion detection and prevention. Surprisingly, we found that the sensing range of the
sensor, the transmission range of the sensor, and the number of sensors have the same
and highest feature importance score, indicating that they are the most relevant features in
predicting the number of barriers.

Further, we performed the feature sensitivity analysis of all the four features through
the Partial Dependency Plot (PDP) analysis (Figure 5). We observed that area of the
rectangular region has a negative repercussion on the response variable (i.e., number of
barriers). In contrast, the sensing range of the sensors, the transmission range of the sensors,
and the number of sensors have a positive repercussion on the response variable.

3.2. Model Performance

Once our model is trained, we evaluate its performance by using R, RMSE, and bias
as the performance metrics. To do so, we fed the testing datasets into the trained model’s
input and obtained the predicted response from the model. Afterward, we plotted a linear
fit line between the observed and predicted response variable in Figure 6a. In doing so,
we observed that the predicted values accord well with the observed values (R = 0.98,
RMSE = 6.47, and bias = 12.35). All the data points lie around the regression line, with
very few (especially the lower values) lying beyond the 95% Confidence Interval (C.I.).
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However, the presence of positive bias indicates that the model is slightly overestimating
the response variable.

Further to understand the distribution of errors in the model, we have plotted the error
histogram of the model using 10 bins (Figure 6b). We fitted a continuous Gaussian fit on the
error distribution and found that the error follows left-skewed distribution (also called neg-
atively skewed distribution). The error ranges from −7.4 (leftmost bin) to 21.4 (rightmost
bin). Negative errors (left to the zero error line) represent the underestimated region, and
positive errors (right to the zero error line) represent the overestimated region. The peak of
the distribution lies in the overestimated region, indicating the presence of positive bias.

Figure 4. Bar graph illustrating each feature’s relative feature importance score estimated through
regression tree ensemble approach.
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Figure 5. Feature sensitivity analysis through partial dependency plot. Two features are considered at a time (a total of six pairs from a–f). The left image shows the
2-D variation profile (with histogram) for each pair, and the right image shows the corresponding 3-D variation profile.



Sensors 2022, 22, 1070 11 of 15

0

1

2

3

4

5

6

7

8

9

-7
.4

-4
.2 -1 2
.2

5
.4

8
.6

1
1
.8 1
5

1
8
.2

2
1
.4

Figure 6. (a) Linear regression curve between the predicted result of LT-ZM-SVR model and observed
values. (b) Error distribution analysis though error histogram.

4. Discussion
4.1. Comparison with Other Scaling Methods

We also evaluated and compared the performance of other scaling approaches. We
considered Center Mean (CM) scaling and Min-Max scaling along with Z-score scaling.
We also considered the Non-Scaled (NS) version for an appropriate comparison. After
log transformation of the features, we applied these scaling techniques and trained the
SVR model. We reported the performance of LT-NS-SVR, LT-CM-SVR, LT-ZM-SVR, and
LT-MM-SVR in Table 2. Interestingly, we found that the predicted barriers accord well with
the observed values for all the variants. However, the RMSE, MSE, bias, and computational
time complexity of LT-NS-SVR is worst among all.

Table 2. Comparison of the performance of Z-score scaling (i.e., LT-ZM-SVR) with other scaling
methods (i.e., LT-NS-SVR, LT-CM-SVR, and LT-MM-SVR).

Performance
Metrics LT-NS-SVR LT-CM-SVR LT-ZM-SVR LT-MM-SVR

R 0.96 0.94 0.98 0.97

RMSE 12.66 2.39 6.47 4.59

MSE 160.15 5.727 41.87 21.10

Bias 36.30 6.24 12.35 15.62

Time (s) 2.21 0.59 0.65 0.51

4.2. Comparison with Benchmark Algorithms

To ensure an unbiased conclusion, we compared the performance of the proposed
approach with different benchmark algorithms. In doing so, we evaluated the performance
of ANN [39], GRNN [40], GPR [41,42], and Random Forest (RF) [43] over the same datasets
after performing LT and z-score scaling on the features (Table 3). These models are se-
lected based upon their performance in different applications such as remote sensing [30],
WSNs [44], IoT [45], and blockchain [46]. We selected R, RMSE, MSE, bias, and computa-
tional time as the performance metrics. In comparing, we found that the proposed approach
outperforms the benchmark algorithms in terms of RMSE, MSE, and bias. Additionally,
LT-ZM-SVR emerges as the computationally efficient approach. Surprisingly, we found
that the RF has the best R; however, with a poor RMSE. We observed a positive bias (i.e.,
overestimation tendency) in GRNN, GPR, RF, and LT-ZM-SVR. In contrast, a negative bias
(i.e., underestimation tendency) is observed with ANN.
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Table 3. Comparison of the proposed model with the benchmark algorithms.

Performance
Metrics

Methods

LT-ZM-SVR ANN GRNN GPR Random
Forest

R 0.98 0.38 0.96 0.94 0.99

RMSE 6.47 46.37 57.56 63.83 32.15

MSE 41.87 2150.20 3312.00 4074.7 1033.6

Bias 12.35 -36.12 49.62 50.96 28.62

Time (s) 0.65 1.81 2.02 1.71 2.70

4.3. Sensitivity Analysis of the LT-ZM-SVR

Finally, we performed the sensitivity analysis of the LT-ZM-SVR model to evaluate
its robustness in the presence of uncertainty in input features. To do so, we introduced a
fixed amount of variation in any one of the input features, keeping others constant. We
performed this iteratively for all the features and reported the percentage change in the
response variable in Figure 7. From the heat map, we found that overall the model is quite
stable in the presence of small uncertainty. Relatively, the model is more vulnerable to the
uncertainly present in the number of sensors.
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Figure 7. Sensitivity analysis of LT−ZM−SVR for ±5% and ±10% uncertainty in the input feature.

5. Conclusions

This study proposed a novel approach to estimate the number of barriers required
for intrusion detection. To do so, we extracted relevant features from the network pa-
rameters through Monte Carlo simulations. We evaluated the relevancy of each feature
through feature importance analysis. We found the area of the RoI to be the least relevant
feature in estimating the number of barriers. All other features (i.e., the sensing range,
the transmission range, and the number of sensors) equally carry the highest relevancy.
Additionally, to measure the impact of each feature on the response variable, we performed
a feature sensitivity analysis. We observed that except for the area of the RoI, all other
features positively impact the response variable. Afterward, we applied log transformation
and scaling operations on the selected features. After feature pre-processing, we applied
the tuned SVR algorithm as an interpretable data-driven model. Once our model was
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trained, we evaluated its performance on the testing datasets using R, RMSE, MSE, bias,
and computational time complexity as performance metrics. We found that the proposed
approach accurately and timely predicts the number of barriers for fast intrusion detection
and prevention.

For a robust conclusion, we compared the performance of the proposed approach with
different scaling and benchmark algorithms. We found that the proposed methodology
outperforms all the benchmark algorithms. However, the limitation of the proposed
algorithm is that it assumes the values of the input features to be a positive real number.
This study is a step towards fast intrusion detection and prevention using WSNs. Our
approach can be employed for near-real-time applications such as border surveillance.
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